• 제목/요약/키워드: ANN model

검색결과 830건 처리시간 0.025초

Cost-based optimization of shear capacity in fiber reinforced concrete beams using machine learning

  • Nassif, Nadia;Al-Sadoon, Zaid A.;Hamad, Khaled;Altoubat, Salah
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.671-680
    • /
    • 2022
  • The shear capacity of beams is an essential parameter in designing beams carrying shear loads. Precise estimation of the ultimate shear capacity typically requires comprehensive calculation methods. For steel fiber reinforced concrete (SFRC) beams, traditional design methods may not accurately predict the interaction between different parameters affecting ultimate shear capacity. In this study, artificial neural network (ANN) modeling was utilized to predict the ultimate shear capacity of SFRC beams using ten input parameters. The results demonstrated that the ANN with 30 neurons had the best performance based on the values of root mean square error (RMSE) and coefficient of determination (R2) compared to other ANN models with different neurons. Analysis of the ANN model has shown that the clear shear span to depth ratio significantly affects the predicted ultimate shear capacity, followed by the reinforcement steel tensile strength and steel fiber tensile strength. Moreover, a Genetic Algorithm (GA) was used to optimize the ANN model's input parameters, resulting in the least cost for the SFRC beams. Results have shown that SFRC beams' cost increased with the clear span to depth ratio. Increasing the clear span to depth ratio has increased the depth, height, steel, and fiber ratio needed to support the SFRC beams against shear failures. This study approach is considered among the earliest in the field of SFRC.

Axial capacity of FRP reinforced concrete columns: Empirical, neural and tree based methods

  • Saha Dauji
    • Structural Engineering and Mechanics
    • /
    • 제89권3호
    • /
    • pp.283-300
    • /
    • 2024
  • Machine learning (ML) models based on artificial neural network (ANN) and decision tree (DT) were developed for estimation of axial capacity of concrete columns reinforced with fiber reinforced polymer (FRP) bars. Between the design codes, the Canadian code provides better formulation compared to the Australian or American code. For empirical models based on elastic modulus of FRP, Hadhood et al. (2017) model performed best. Whereas for empirical models based on tensile strength of FRP, as well as all empirical models, Raza et al. (2021) was adjudged superior. However, compared to the empirical models, all ML models exhibited superior performance according to all five performance metrics considered. The performance of ANN and DT models were comparable in general. Under the present setup, inclusion of the transverse reinforcement information did not improve the accuracy of estimation with either ANN or DT. With selective use of inputs, and a much simpler ANN architecture (4-3-1) compared to that reported in literature (Raza et al. 2020: 6-11-11-1), marginal improvement in correlation could be achieved. The metrics for the best model from the study was a correlation of 0.94, absolute errors between 420 kN to 530 kN, and the range being 0.39 to 0.51 for relative errors. Though much superior performance could be obtained using ANN/DT models over empirical models, further work towards improving accuracy of the estimation is indicated before design of FRP reinforced concrete columns using ML may be considered for design codes.

프랜차이즈 레스토랑의 선택속성이 지각된 가치와 고객만족 및 고객충성도에 미치는 영향 (Effects of Franchise Restaurant Selection Attributes on Perceived Value, Customer Satisfaction and Loyalty)

  • 왕수오;이용기;김성환
    • 한국프랜차이즈경영연구
    • /
    • 제9권4호
    • /
    • pp.7-19
    • /
    • 2018
  • Purpose - Recently, global management in Korea franchise industry is becoming an important keyword. As an important branch market, Chinese market plays a major role not only by making experience of the competitiveness among global brands which offers a foothold to become a top global brand, but also by actualizing an economies of scale in production, sales, etc. Therefore, it is necessary to identify key successful factor influencing customer evaluation and responses of Korean franchise restaurant targeting Chinese consumers in China context. The purpose of this study is to examine the effects for Korean franchise restaurant selection attributes on perceived value, customer satisfaction and customer loyalty in Chinese context with SmartPLS 3 and Artifical Neural Network(ANN). Research design, data, and methodology - For these purposes, the authors developed several hypotheses. A questionnaire survey was conducted on the panel of online survey companies for Chinese consumers who have visited Korean franchise restaurants. A total of 404 data were analyzed using structural equation modeling(SEM) and artifical neural network(ANN) with SPSS 22.0 and SmartPLS 3.0. Result - The findings of this study are as follows: First, the alternative model findings show that facilities & atmosphere, employee service, and menu influenced on utilitarian value, customer satisfaction, and customer loyalty directly. Second, employee service influenced on customer satisfaction. Third, menu influenced on hedonic value. Fourth, brand reputation influenced on utilitarian value. Fifth, hedonic value increase customer satisfaction and customer loyalty. Sixth, hedonic value increase customer loyalty. Seventh, customer increase customer loyalty. And, the ANN analysis shows that utilitarian value is the first most important factor influencing customer satisfaction, followed by hedonic value, facilities & atmosphere, menu and employee service. However, the ANN analysis shows that customer satisfaction is the first most important factor influencing customer loyalty, followed by utilitarian value, hedonic value, brand reputation, menu, and employee service. Conclusions - This study provides practical implications for enhancing customer satisfaction and customer loyalty by applying the ANN technique that complements the limitations of the linear structural relationship analysis using the proposed model and the alternative model. In other words, the SEM-ANN model provides guidelines on how Korean franchise restaurants should formulate facilities & atmosphere, employee service, and menu mix strategies in China. In addition, ANN 's analysis shows that restaurant brand reputation plays a pivotal role in increasing customer loyalty. The fact suggests that Korean franchise companies should establish their domestic brand reputation prior to their entry into overseas markets such as China.

인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정 (Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse)

  • 김상엽;박경섭;류근호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권4호
    • /
    • pp.129-134
    • /
    • 2018
  • 최근, 인공신경망 모델은 예측, 수치제어, 로봇제어, 패턴인식 등의 분야에서 촉망되는 기술이다. 본 연구에서는 인공신경망 모델을 이용하여 온실 외부 온도를 예측하고 이를 온실제어에 활용하는데 목적이 있다. 예측 모델의 성능 평가를 위해 다중회귀모델과 SVM 모델과의 비교분석을 수행하였다. 평가 방법으로는 10-Fold Cross Validation을 사용하였으며, 예측 성능 향상을 위해 상관관계분석 통해 데이터 축소를 수행하였고, 측정 데이터로부터 새로운 Factor 추출하여 데이터의 신뢰성을 확보하였다. 인공신경망 구축을 위해 Backpropagation algorithm을 사용하였으며, 다중회귀모델은 M5 method로 구축하였고, SVM 모델을 epsilon-SVM으로 구축하였다. 각 모델의 비교분석 결과 각각 0.9256, 1.8503과 7.5521로 나타났다. 또한 예측모델을 온실 난방부하 계산에 적용함으로써 온실에 사용되는 에너지 비용 절감을 통한 수입증대에 기여할 수 있다. 실험한 온실의 난방부하는 3326.4kcal/h이며, 총 난방시간이 $10000^{\circ}C/h$일 때 연료소비량은 453.8L로 예측된다. 아울러 데이터 마이닝 기술 중 하나인 인공신경망을 정밀온실제어, 재배기법, 수확예측 등 다양한 농업 분야에 적용함으로써 스마트 농업으로의 발전에 기여할 수 있다.

Evaluation of the effect of aggregate on concrete permeability using grey correlation analysis and ANN

  • Kong, Lijuan;Chen, Xiaoyu;Du, Yuanbo
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.613-628
    • /
    • 2016
  • In this study, the influence of coarse aggregate size and type on chloride penetration of concrete was investigated, and the grey correlation analysis was applied to find the key influencing factor. Furthermore, the proposed 6-10-1 artificial neural network (ANN) model was constructed, and performed under the MATLAB program. Training, testing and validation of the model stages were performed using 81 experiment data sets. The results show that the aggregate type has less effect on the concrete permeability, compared with the size effect. For concrete with a lower w/b, the coarse aggregate with a larger particle size should be chose, however, for concrete with a higher w/c, the aggregate with a grading of 5-20 mm is preferred, too large or too small aggregates are adverse to concrete chloride diffusivity. A new idea for the optimum selection of aggregate to prepare concrete with a low penetration is provided. Moreover, the ANN model predicted values are compared with actual test results, and the average relative error of prediction is found to be 5.62%. ANN procedure provides guidelines to select appropriate coarse aggregate for required chloride penetration of concrete and will reduce number of trial and error, save cost and time.

논문 - AnnAGNPS를 이용한 대전천 유역의 불투수면 변화에 따른 배출부하량 평가 (Impacts of Impevious Cove Change on Pollutant Loads from the Daejeon-Stream Watershed Using AnnAGNPS)

  • 장승우;강문성;송인홍;정세웅
    • 한국관개배수논문집
    • /
    • 제18권2호
    • /
    • pp.3-14
    • /
    • 2011
  • Increased impervious surfaces alter stream hydrology resulting in lower flows during droughts and higher peak flows during floods. Not only urban area but also rural area has been expanded impervious surfaces because of increasing of greenhouses. The main objective of this study was to evaluate the performance of the AnnAGNPS (Annualized Non-Point Source Pollution Model) on the surface runoff characteristics of the Daejeon-Stream watershed, and to predict the hydrological effects due to increasing of impervious surfaces. The model parameters were obtained from the geographical information system (GIS) databases, and additional parameters calibrated with the observed data. The model was calibrated by using 2004 of the runoff data and validated by using 2002 data obtained from WAMIS (Water Management Information System) to compare the simulated results for the study watershed. R2 values and efficiency index (EI) between observed and simulated runoff were 0.78 and 0.80, respectively at the calibration period. In this study, expanding of impervious surfaces such as greenhouses caused increasing of surface runoff, but caused decreasing of total nitrogen and total phosphorus loads.

  • PDF

Development of Awarding System for Construction Contractors in Gaza Strip Using Artificial Neural Network (ANN)

  • El-Sawalhi, Nabil;Hajar, Yousef Abu
    • Journal of Construction Engineering and Project Management
    • /
    • 제6권3호
    • /
    • pp.1-7
    • /
    • 2016
  • The purpose of this paper is to develop a model for selecting the best contractor in the Gaza Strip using the Artificial Neural Network (ANN). The contractor's selection methods and criteria were identified using a field survey. Fifty four engineers were asked to fill a questionnaire that covers factors related to the selection criteria of contractors practiced in Gaza Strip. The results shows that the dominant part of respondents (91%) confirmed that the current awarding method "the lowest bid price" is considered one of the major problems of the construction sector, "award the bid to the highest weight after combination of the technical and financial scores" represented 50% of the respondents. The criteria weights were determined based on Relative Importance Index (RII. Ninety-one tenders(13 projects) were used to train and test the ANN model after re-evaluating the contractors depend on the weights of factors to select the best contractor who achieves the highest score. Neurosolution software was used to train the models. The results of the trained models indicated that neural network reasonably succeeded in selection the best contractor with 95.96% accuracy. The performed sensitivity analysis showed that the profitability and capital of company are the most influential parameters in selection contractors. This model gives chance to the owner to be more accurate in selecting the most appropriate contractor.

이중외피 건물의 개구부 및 난방설비 제어를 위한 인공지능망의 적용 (Application of Artificial Neural Network for Optimum Controls of Windows and Heating Systems of Double-Skinned Buildings)

  • 문진우;김상민;김수영
    • 설비공학논문집
    • /
    • 제24권8호
    • /
    • pp.627-635
    • /
    • 2012
  • This study aims at developing an artificial neural network(ANN)-based predictive and adaptive temperature control method to control the openings at internal and external skins, and heating systems used in a building with double skin envelope. Based on the predicted indoor temperature, the control logic determined opening conditions of air inlets and outlets, and the operation of the heating systems. The optimization process of the initial ANN model was conducted to determine the optimal structure and learning methods followed by the performance tests by the comparison with the actual data measured from the existing double skin envelope. The analysis proved the prediction accuracy and the adaptability of the ANN model in terms of Root Mean Square and Mean Square Errors. The analysis results implied that the proposed ANN-based temperature control logic had potentials to be applied for the temperature control in the double skin envelope buildings.

Flexural capacity estimation of FRP reinforced T-shaped concrete beams via soft computing techniques

  • Danial Rezazadeh Eidgahee;Atefeh Soleymani;Hamed Hasani;Denise-Penelope N. Kontoni;Hashem Jahangir
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.1-13
    • /
    • 2023
  • This paper discusses a framework for predicting the flexural strength of prestressed and non-prestressed FRP reinforced T-shaped concrete beams using soft computing techniques. An analysis of 83 tests performed on T-beams of varying widths has been conducted for this purpose with different widths of compressive face, beam depth, compressive strength of concrete, area of prestressed and non-prestressed FRP bars, elasticity modulus of prestressed and non-prestressed FRP bars, and the ultimate tensile strength of prestressed and non-prestressed FRP bars. By analyzing the data using two soft computing techniques, named artificial neural networks (ANN) and gene expression programming (GEP), the fundamental parameters affecting the flexural performance of prestressed and non-prestressed FRP reinforced T-shaped beams were identified. The results showed that although the proposed ANN model outperformed the GEP model with higher values of R and lower error values, the closed-form equation of the GEP model can provide a simple way to predict the effect of input parameters on flexural strength as the output. The sensitivity analysis results revealed the most influential input parameters in ANN and GEP models are respectively the beam depth and elasticity modulus of FRP bars.

인공신경망과 대기부식환경 모니터링 데이터를 이용한 항공기 세척주기 결정 알고리즘 (Algorithm for Determining Aircraft Washing Intervals Using Atmospheric Corrosion Monitoring of Airbase Data and an Artificial Neural Network)

  • 권혁준;이두열
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.377-386
    • /
    • 2023
  • Aircraft washing is performed periodically for corrosion control. Currently, the aircraft washing interval is qualitatively set according to the geographical conditions of each base. We developed a washing interval determination algorithm based on atmospheric corrosion environment monitoring data at the Republic of Korea Air Force (ROKAF) bases and United States Air Force (USAF) bases to determine the optimal interval. The main factors of the washing interval decision algorithm were identified through hierarchical clustering, sensitivity analysis, and analysis of variance, and criteria were derived. To improve the classification accuracy, we developed a washing interval decision model based on an artificial neural network (ANN). The ANN model was calibrated and validated using the atmospheric corrosion environment monitoring data and washing intervals of the USAF bases. The new algorithm returned a three-level washing interval, depending on the corrosion rate of steel and the results of the ANN model. A new base-specific aircraft washing interval was proposed by inputting the atmospheric corrosion environment monitoring results of the ROKAF bases into the algorithm.