In this paper the development and implementation of an artificial intelligence (AI)-based Tunnelling Impact prediction and assessment program (SKKU-iTunnel) is presented. Program predicts tunnelling induced surface settlement and groundwater drawdown by utilizing well trained ANNs and uses these predicted values to perform the damage assessment likely to occur in nearby structures and pipelines/utilities for a given tunnel problem. Generalised artificial neural networks (ANNs) were trained, to predict the induced parameters, through databases generated by combining real field data and numerical analysis for cases that represented real field conditions. It is shown that program equipped with carefully trained ANN can predict tunnel impact assessments and perform damage assessments quiet efficiently and comparable accuracy to that of numerical analysis. This paper describes the idea and implementation details of the SKKU-iTunnel with an example for demonstration.
Seyed Mohammad Mojtabaei;Rasoul Khandan;Iman Hajirasouliha
Steel and Composite Structures
/
v.51
no.4
/
pp.441-456
/
2024
This paper aims to develop Machine Learning (ML) algorithms to predict the buckling resistance of cold-formed steel (CFS) channels with restrained flanges, widely used in typical CFS sheathed wall panels, and provide practical design tools for engineers. The effects of cross-sectional restraints were first evaluated on the elastic buckling behaviour of CFS channels subjected to pure axial compressive load or bending moment. Feedforward multi-layer Artificial Neural Networks (ANNs) were then trained on different datasets comprising CFS channels with various dimensions and properties, plate thicknesses, and restraining conditions on one or two flanges, while the elastic distortional buckling resistance of the elements were determined according to the Finite Strip Method (FSM). To develop less biased networks and ensure that every observation from the original dataset has the chance of appearing in the training and test set, a K-fold cross-validation technique was implemented. In addition, the hyperparameters of the ANNs were tuned using a grid search technique to provide ANNs with optimum performances. The results demonstrated that the trained ANNs were able to predict the elastic distortional buckling resistance of CFS flange-restrained elements with an average accuracy of 99% in terms of coefficient of determination. The developed models were then used to propose a simple ANN-based design formula for the prediction of the elastic distortional buckling stress of CFS flange-restrained elements. Finally, the proposed formula was further evaluated on a separate set of unseen data to ensure its accuracy for practical applications.
Transactions of the Korean Society of Mechanical Engineers B
/
v.28
no.8
s.227
/
pp.984-988
/
2004
This study presents the process of the solenoid parameter estimation of an common-rail injector fer HSDI(High Speed Direct Injection) diesel engines. The EMF(Electromotive Force) and solenoid inductance are the major parameters for presenting the injector dynamics, and also these parameters are estimated by using a multi-layer feedforward artificial neural networks(ANN). The performances of parameter estimators are verified by the simulation with injector model. The feasibility of this methodology is closely examined through the simulation in the various operating points of injector. The simulation results have revealed that estimated parameters show favorable agreements with the common-rail injector model.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.49
no.8
/
pp.405-411
/
2000
When faults occur in transmission lines, the classification of faults is very important. If the fault is HIF(High Impedance Fault), it cannot be detected or removed by conventional overcurrent relays (OCRs), and results in fire hazards and causes damages in electrical equipment or personal threat. The fast discrimination of fault needs to effective protection and treatment and is important problem for power system protection. This paper propolsed the fault detection and discrimination algorithm for LIFs(Low Impedance Faults) and HIFs(High Impedance Faults). This algorithm uses artificial neural networks and variation of 3-phase maximum currents per period while faults. A double lines-to-ground and line-to-line faults can be detected using Neural Network. Also, the other faults can be detected using the value of variation of maximum current. Test results show that the proposed algorithms discriminate LIFs and HIFs accurately within a half cycle.
International conference on construction engineering and project management
/
2011.02a
/
pp.597-602
/
2011
A robust asset management methodology is essential for effective decision-making of maintenance, repair and rehabilitation of a bridge network. It can be achieved by a computer-based bridge management system (BMS). Successful BMS development requires a reliable bridge deterioration model, which is the most crucial component in a BMS, and an optimal management philosophy. The maintenance optimization methodology proposed in this paper is developed for a small bridge network with limited structural condition rating records. . The methodology is organized in three major components: (1) bridge health index (BHI); (2) maintenance and budget optimization; and (3) reliable Artificial Intelligence (AI) based bridge deterioration model. The outcomes of the paper will help to identify BMS implementation problems and to provide appropriate solutions for managing small bridge networks.
Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines using the sounds emitted by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We present here an automatic fault diagnosis system of hand drills using discrete wavelet transform (DWT) and pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The diagnosis system consists of three steps. Because of the presence of many noisy patterns in our signals, we first conduct a filtering analysis based on DWT. Second, the wavelet coefficients of the filtered signals are extracted as our features for the pattern recognition part. Third, PCA is performed over the wavelet coefficients in order to reduce the dimensionality of the feature vectors. Finally, the very first principal components are used as the inputs of an ANN based classifier to detect the wear on the drills. The results show that the proposed DWT-PCA-ANN method can be used for the sounds based automated diagnosis system.
The prediction of the moment rotation behavior of semi-rigid connections has been the subject of extensive research. However, to improve the accuracy of these predictions, there is a growing interest in employing machine learning algorithms. This paper investigates the effectiveness of using Multi-gene genetic programming (MGGP) to predict the moment-rotation behavior of flush-end plate connections compared to that of artificial neural networks (ANN) and previous studies. It aims to automate the process of determining the most suitable equations to accurately describe the behavior of these types of connections. Experimental data was used to train ANN and MGGP. The performance of the models was assessed by comparing the values of coefficient of determination (R2), maximum absolute error (MAE), and root-mean-square error (RMSE). The results showed that MGGP produced more accurate, reliable, and general predictions compared to ANN and previous studies with an R2 exceeding 0.99, an RMSE of 6.97, and an MAE of 38.68, highlighting its advantages over other models. The use of MGGP can lead to better modeling and more precise predictions in structural design. Additionally, an experimentally-based regression analysis was conducted to obtain the rotational capacity of FECs. A new equation was proposed and compared to previous ones, showing significant improvement in accuracy with an R2 score of 0.738, an RMSE of 0.014, and an MAE of 0.024.
Limited studies are available on the mathematical estimates of the compressive strength (CS) of glass fiber-embedded polymer (glass-FRP) compressive elements. The present study has endeavored to estimate the CS of glass-FRP normal strength concrete (NSTC) compression elements (glass-FRP-NSTC) employing two various methodologies; mathematical modeling and artificial neural networks (ANNs). The dataset of 288 glass-FRP-NSTC compression elements was constructed from the various testing investigations available in the literature. Diverse equations for CS of glass-FRP-NSTC compression elements suggested in the previous research studies were evaluated employing the constructed dataset to examine their correctness. A new mathematical equation for the CS of glass-FRP-NSTC compression elements was put forwarded employing the procedures of curve-fitting and general regression in MATLAB. The newly suggested ANN equation was calibrated for various hidden layers and neurons to secure the optimized estimates. The suggested equations reported a good correlation among themselves and presented precise estimates compared with the estimates of the equations available in the literature with R2= 0.769, and R2 =0.9702 for the mathematical and ANN equations, respectively. The statistical comparison of diverse factors for the estimates of the projected equations also authenticated their high correctness for apprehending the CS of glass-FRP-NSTC compression elements. A broad parametric examination employing the projected ANN equation was also performed to examine the effect of diverse factors of the glass-FRP-NSTC compression elements.
Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.694-698
/
2005
본 연구에서는 우리나라 5대강 유역에 대한 홍수예경보시스템의 홍수추적방법으로 이용되고 있는 물리적인 모형인 저류함수법의 한계점을 극복하고, 영산강 유역의 본류를 대표하는 나주지점과 황룡강 유역을 대표하는 선암지점에 대하여 유역의 수문학적 구조를 나타내지 않는 인공신경망 이론을 이용하여 강우-유출 과정의 비선형 모형을 개발하였다. 또한, 신속한 홍수유출량 예측과 예측 결과에 따른 현장 적용이 가능하도록 CS(Client-Server) 기반에서 인공신경망에 대한 원시코드(source code)를 GUI(Graphical User Interface)화하여 홍수예측시스템(Flood Forecasting System : FFS)을 개발하였다. 본 연구결과 나주지점에서는 Model II의 ANN_NJ_9 모형이 선암지점에서는 Model III의 ANN_SA_9 모형이 강우-유출 특성을 가장 잘 반영하였다. 또한, 본 연구에서 개발한 GUI_FFS에 대하여 기 확보된 2004년도 강우 및 유출량 적용한 결과 0.98이상의 $R^2$값을 보임으로서 향후 수자원 및 하천계획 수립과 그에 따른 운영 및 관리에 효율성을 더할 수 있을 것이라 판단된다.
This paper presents the evaluation of the impact of climate change on water resources and yield capacity of Asa and Kampe reservoirs. Trend analysis of mean temperature, runoff, rainfall and evapotranspiration was carried out using Mann Kendall and Sen's slope, while runoff was modeled as a function of temperature, rainfall and evapotranspiration using Artificial Neural Networks (ANN). Rainfall and runoff exhibited positive trends at the two dam sites and their upstream while forecasted ten-year runoff displayed increasing positive trend which indicates high reservoir inflow. The reservoir yield capacity estimated with the ANN forecasted runoff was higher by about 38% and 17% compared to that obtained with historical runoff at Asa and Kampe respectively. This is an indication that there is tendency for water resources of the reservoir to increase and thus more water will be available for water supply and irrigation to ensure food security.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.