• Title/Summary/Keyword: ANN(Artificial Neural Networks)

Search Result 375, Processing Time 0.024 seconds

Development of AI-based Prediction and Assessment Program for Tunnelling Impact

  • Yoo, Chungsik;HAIDER, SYED AIZAZ;Yang, Jaewon;ALI, TABISH
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.39-52
    • /
    • 2019
  • In this paper the development and implementation of an artificial intelligence (AI)-based Tunnelling Impact prediction and assessment program (SKKU-iTunnel) is presented. Program predicts tunnelling induced surface settlement and groundwater drawdown by utilizing well trained ANNs and uses these predicted values to perform the damage assessment likely to occur in nearby structures and pipelines/utilities for a given tunnel problem. Generalised artificial neural networks (ANNs) were trained, to predict the induced parameters, through databases generated by combining real field data and numerical analysis for cases that represented real field conditions. It is shown that program equipped with carefully trained ANN can predict tunnel impact assessments and perform damage assessments quiet efficiently and comparable accuracy to that of numerical analysis. This paper describes the idea and implementation details of the SKKU-iTunnel with an example for demonstration.

Predicting restraining effects in CFS channels: A machine learning approach

  • Seyed Mohammad Mojtabaei;Rasoul Khandan;Iman Hajirasouliha
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.441-456
    • /
    • 2024
  • This paper aims to develop Machine Learning (ML) algorithms to predict the buckling resistance of cold-formed steel (CFS) channels with restrained flanges, widely used in typical CFS sheathed wall panels, and provide practical design tools for engineers. The effects of cross-sectional restraints were first evaluated on the elastic buckling behaviour of CFS channels subjected to pure axial compressive load or bending moment. Feedforward multi-layer Artificial Neural Networks (ANNs) were then trained on different datasets comprising CFS channels with various dimensions and properties, plate thicknesses, and restraining conditions on one or two flanges, while the elastic distortional buckling resistance of the elements were determined according to the Finite Strip Method (FSM). To develop less biased networks and ensure that every observation from the original dataset has the chance of appearing in the training and test set, a K-fold cross-validation technique was implemented. In addition, the hyperparameters of the ANNs were tuned using a grid search technique to provide ANNs with optimum performances. The results demonstrated that the trained ANNs were able to predict the elastic distortional buckling resistance of CFS flange-restrained elements with an average accuracy of 99% in terms of coefficient of determination. The developed models were then used to propose a simple ANN-based design formula for the prediction of the elastic distortional buckling stress of CFS flange-restrained elements. Finally, the proposed formula was further evaluated on a separate set of unseen data to ensure its accuracy for practical applications.

Parameter Estimation and Modeling of HSDI Common-Rail Injector Using Feedforward Neural Network (앞먹임 신경회로망을 이용한 HSDI Common-Rail 인젝터의 파라미터 추정 및 모델링)

  • Yoon, Ma-Ru;Sunwoo, Myoung-Ho;Lee, Kang-Yoon;Lee, Seung-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.984-988
    • /
    • 2004
  • This study presents the process of the solenoid parameter estimation of an common-rail injector fer HSDI(High Speed Direct Injection) diesel engines. The EMF(Electromotive Force) and solenoid inductance are the major parameters for presenting the injector dynamics, and also these parameters are estimated by using a multi-layer feedforward artificial neural networks(ANN). The performances of parameter estimators are verified by the simulation with injector model. The feasibility of this methodology is closely examined through the simulation in the various operating points of injector. The simulation results have revealed that estimated parameters show favorable agreements with the common-rail injector model.

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Neural Network and the Variation of Fault Currents (신경회로망과 고장전류의 변화를 이용한 고장판별 알고리즘에 관한 연구)

  • Yeo, Sang-Min;Kim, Cheol-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.8
    • /
    • pp.405-411
    • /
    • 2000
  • When faults occur in transmission lines, the classification of faults is very important. If the fault is HIF(High Impedance Fault), it cannot be detected or removed by conventional overcurrent relays (OCRs), and results in fire hazards and causes damages in electrical equipment or personal threat. The fast discrimination of fault needs to effective protection and treatment and is important problem for power system protection. This paper propolsed the fault detection and discrimination algorithm for LIFs(Low Impedance Faults) and HIFs(High Impedance Faults). This algorithm uses artificial neural networks and variation of 3-phase maximum currents per period while faults. A double lines-to-ground and line-to-line faults can be detected using Neural Network. Also, the other faults can be detected using the value of variation of maximum current. Test results show that the proposed algorithms discriminate LIFs and HIFs accurately within a half cycle.

  • PDF

OPTIMISATION OF ASSET MANAGEMENT METHODOLOGY FOR A SMALL BRIDGE NETWORK

  • Jaeho Lee;Kamalarasa Sanmugarasa
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.597-602
    • /
    • 2011
  • A robust asset management methodology is essential for effective decision-making of maintenance, repair and rehabilitation of a bridge network. It can be achieved by a computer-based bridge management system (BMS). Successful BMS development requires a reliable bridge deterioration model, which is the most crucial component in a BMS, and an optimal management philosophy. The maintenance optimization methodology proposed in this paper is developed for a small bridge network with limited structural condition rating records. . The methodology is organized in three major components: (1) bridge health index (BHI); (2) maintenance and budget optimization; and (3) reliable Artificial Intelligence (AI) based bridge deterioration model. The outcomes of the paper will help to identify BMS implementation problems and to provide appropriate solutions for managing small bridge networks.

  • PDF

Automatic Machine Fault Diagnosis System using Discrete Wavelet Transform and Machine Learning

  • Lee, Kyeong-Min;Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1299-1311
    • /
    • 2017
  • Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines using the sounds emitted by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We present here an automatic fault diagnosis system of hand drills using discrete wavelet transform (DWT) and pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The diagnosis system consists of three steps. Because of the presence of many noisy patterns in our signals, we first conduct a filtering analysis based on DWT. Second, the wavelet coefficients of the filtered signals are extracted as our features for the pattern recognition part. Third, PCA is performed over the wavelet coefficients in order to reduce the dimensionality of the feature vectors. Finally, the very first principal components are used as the inputs of an ANN based classifier to detect the wear on the drills. The results show that the proposed DWT-PCA-ANN method can be used for the sounds based automated diagnosis system.

Enhancing prediction of the moment-rotation behavior in flush end plate connections using Multi-Gene Genetic Programming (MGGP)

  • Amirmohammad Rabbani;Amir Reza Ghiami Azad;Hossein Rahami
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.643-656
    • /
    • 2024
  • The prediction of the moment rotation behavior of semi-rigid connections has been the subject of extensive research. However, to improve the accuracy of these predictions, there is a growing interest in employing machine learning algorithms. This paper investigates the effectiveness of using Multi-gene genetic programming (MGGP) to predict the moment-rotation behavior of flush-end plate connections compared to that of artificial neural networks (ANN) and previous studies. It aims to automate the process of determining the most suitable equations to accurately describe the behavior of these types of connections. Experimental data was used to train ANN and MGGP. The performance of the models was assessed by comparing the values of coefficient of determination (R2), maximum absolute error (MAE), and root-mean-square error (RMSE). The results showed that MGGP produced more accurate, reliable, and general predictions compared to ANN and previous studies with an R2 exceeding 0.99, an RMSE of 6.97, and an MAE of 38.68, highlighting its advantages over other models. The use of MGGP can lead to better modeling and more precise predictions in structural design. Additionally, an experimentally-based regression analysis was conducted to obtain the rotational capacity of FECs. A new equation was proposed and compared to previous ones, showing significant improvement in accuracy with an R2 score of 0.738, an RMSE of 0.014, and an MAE of 0.024.

Machine learning model for predicting ultimate capacity of FRP-reinforced normal strength concrete structural elements

  • Selmi, Abdellatif;Ali, Raza
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.315-335
    • /
    • 2023
  • Limited studies are available on the mathematical estimates of the compressive strength (CS) of glass fiber-embedded polymer (glass-FRP) compressive elements. The present study has endeavored to estimate the CS of glass-FRP normal strength concrete (NSTC) compression elements (glass-FRP-NSTC) employing two various methodologies; mathematical modeling and artificial neural networks (ANNs). The dataset of 288 glass-FRP-NSTC compression elements was constructed from the various testing investigations available in the literature. Diverse equations for CS of glass-FRP-NSTC compression elements suggested in the previous research studies were evaluated employing the constructed dataset to examine their correctness. A new mathematical equation for the CS of glass-FRP-NSTC compression elements was put forwarded employing the procedures of curve-fitting and general regression in MATLAB. The newly suggested ANN equation was calibrated for various hidden layers and neurons to secure the optimized estimates. The suggested equations reported a good correlation among themselves and presented precise estimates compared with the estimates of the equations available in the literature with R2= 0.769, and R2 =0.9702 for the mathematical and ANN equations, respectively. The statistical comparison of diverse factors for the estimates of the projected equations also authenticated their high correctness for apprehending the CS of glass-FRP-NSTC compression elements. A broad parametric examination employing the projected ANN equation was also performed to examine the effect of diverse factors of the glass-FRP-NSTC compression elements.

A Development of GUI Flood Forecasting System Using Artificial Neural Networks Theory (인공신경망 이론을 이용한 GUI홍수예측시스템 개발)

  • Park, Sung-Chun;Oh, Chang-Ryol;Kim, Dong-Ryeol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.694-698
    • /
    • 2005
  • 본 연구에서는 우리나라 5대강 유역에 대한 홍수예경보시스템의 홍수추적방법으로 이용되고 있는 물리적인 모형인 저류함수법의 한계점을 극복하고, 영산강 유역의 본류를 대표하는 나주지점과 황룡강 유역을 대표하는 선암지점에 대하여 유역의 수문학적 구조를 나타내지 않는 인공신경망 이론을 이용하여 강우-유출 과정의 비선형 모형을 개발하였다. 또한, 신속한 홍수유출량 예측과 예측 결과에 따른 현장 적용이 가능하도록 CS(Client-Server) 기반에서 인공신경망에 대한 원시코드(source code)를 GUI(Graphical User Interface)화하여 홍수예측시스템(Flood Forecasting System : FFS)을 개발하였다. 본 연구결과 나주지점에서는 Model II의 ANN_NJ_9 모형이 선암지점에서는 Model III의 ANN_SA_9 모형이 강우-유출 특성을 가장 잘 반영하였다. 또한, 본 연구에서 개발한 GUI_FFS에 대하여 기 확보된 2004년도 강우 및 유출량 적용한 결과 0.98이상의 $R^2$값을 보임으로서 향후 수자원 및 하천계획 수립과 그에 따른 운영 및 관리에 효율성을 더할 수 있을 것이라 판단된다.

  • PDF

Evaluation of impact of climate variability on water resources and yield capacity of selected reservoirs in the north central Nigeria

  • Salami, Adebayo Wahab;Ibrahim, Habibat;Sojobi, Adebayo Olatunbosun
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.290-297
    • /
    • 2015
  • This paper presents the evaluation of the impact of climate change on water resources and yield capacity of Asa and Kampe reservoirs. Trend analysis of mean temperature, runoff, rainfall and evapotranspiration was carried out using Mann Kendall and Sen's slope, while runoff was modeled as a function of temperature, rainfall and evapotranspiration using Artificial Neural Networks (ANN). Rainfall and runoff exhibited positive trends at the two dam sites and their upstream while forecasted ten-year runoff displayed increasing positive trend which indicates high reservoir inflow. The reservoir yield capacity estimated with the ANN forecasted runoff was higher by about 38% and 17% compared to that obtained with historical runoff at Asa and Kampe respectively. This is an indication that there is tendency for water resources of the reservoir to increase and thus more water will be available for water supply and irrigation to ensure food security.