• Title/Summary/Keyword: AMS dating

Search Result 29, Processing Time 0.022 seconds

Age Constraints on Human Footmarks in Hamori Formation, Jeiu Island, Korea (제주도 하모리층에 발달하는 사람 발자국의 형성시기)

  • Cho Deung-Lyong;Park Ki-Hwa;Jin Jae-Hwa;Hong Wan
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.149-156
    • /
    • 2005
  • Ar-Ar, carbon AMS and OSL dating was carried out to clarify the age of the human footmarks on the Hamori Formation, Jeju Island, Korea. $^{40}Ar/^{39}Ar$ ages of trachybasalt from the Songaksan Tuff, which is underlain by the Hamori Formation, range between $10.6{\pm}19.9\;Ka$ and $11.7{\pm}26.3\;Ka$. Radiocarbon AMS ages of humin fractions extracted from sediment samples yielded the maximum limit age of the Hamori Formation as $15,161{\pm}70\;yr$ B.P. The OSL dating of the top and bottom layers of the Hamori Formation gave $6.8{\pm}0.3\;ka$ and $7.6{\pm}0.5\;ka$, respectively, suggesting that timing of the human footmarks formation can be constrained as between ca 6,800 yr B.P. and 7,600 yr B.P.

Lower the Detection Limits of Accelerator Mass Spectrometry

  • John A., Eliades;Song, Jong-Han;Kim, Jun-Gon;Kim, Jae-Yeol;O, Jong-Ju;Kim, Jong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.243-244
    • /
    • 2013
  • Over the past 15 years, several groups have incorporated radio-frequency quadrupole (RFQ) based instruments before the accelerator in accelerator mass spectrometry (AMS) systems for ion-gas interactions at low kinetic energy (<40 eV). Most AMS systems arebased on a tandem accelerator, which requires negative ions at injection. Typically, AMS sensitivity abundance ratios for radioactive-to-stable isotope are limited to Xr/Xs >10^-15, and the range of isotopes that can be analyzed is limited because of theneed to produce rather large negative ion beams and the presence of atomic isobaric interferences after stripping. The potential of using low-kinetic energy ion-gas interactions for isobar suppression before the accelerator has been demonstrated for several negative ion isobar systems with a prototype RFQ system incorporated into the AMS system at IsoTrace Laboratory, Canada (Ontario, Toronto). Requisite for any such RFQ system applied to very rare isotope analysis is large transmission of the analyte ion. This requires proper phase-space matching between the RFQ acceptance and the ion beam phase space (e.g. 35 keV, ${\varphi}3mm$, +-35 mrad), and the ability to control the average ion energy during interactions with the gas. A segmented RFQ instrument is currently being designed at Korea Institute for Science and Technology (한국과학기술연구원, KIST). It will consist of: a) an initial static voltage electrode deceleration region, to lower the ion energy from 35 keV down to <40 eV at injection into the first RFQ segment; b) the segmented quadrupole ion-gas interaction region; c) a static voltage electrode re-acceleration region for ion injection into a tandem accelerator. Design considerations and modeling will be discussed. This system should greatly lower the detection limits of the 6 MV AMS system currently being commissioned at KIST. As an example, current detection sensitivity of 41Ca/Ca is limited to the order of 10^-15 while the 41Ca/Ca abundance in modern samples is typically 41Ca/Ca~10^-14 - 10^-15. The major atomic isobaric interference in AMS is 41K. Proof-of-principal work at IsoTrace Lab. has demonstrated that a properly designed system can achieve a relative suppression of KF3-/41CaF3- >4 orders of magnitude while maintaining very high transmission of the 41CaF3- ion. This would lower the 41Ca detection limits of the KIST AMS system to at least 41Ca/Ca~10^-19. As Ca is found in bones and shells, this would potentially allow direct dating of valuable anthropological archives and archives relevant to our understanding of the most pronounced climate change events over the past million years that cannot be directly dated with the presently accessible isotopes.

  • PDF

Radiocarbon Dating of a Wooden Board from Yeongheung-do Shipwreck Using Wiggle Matching of Decennial Tree-Ring Samples (10년 간격 연륜의 위글매치를 이용한 영흥도선의 방사성탄소연대 측정)

  • Nam, Tae Gwang;Kim, Taek Joon;Moon, Hwan Suk
    • Journal of Conservation Science
    • /
    • v.31 no.3
    • /
    • pp.279-285
    • /
    • 2015
  • The purpose of this study was to analyze radiocarbon dating, using wiggle match, of a wooden board from Yeongheung-do shipwreck excavated from Yeongheung-do in Incheon Ongjingun. The result of wiggle matching for 5 decennial tree-ring block samples of the hull bottom board produced ${\pm}2{\sigma}$ radiocarbon date (95.4% confidence interval) as A.D. 710~730 or A.D. 750~774. It indicated that the Yeongheung-do shipwreck belonged to the early or middle of the 8th century. Radiocarbon dating results confirmed the date speculated by archaeologists according to ship structure and pottery style.

Radiocarbon Dating of a Wooden Board from Mado Shipwreck No. 4 Using Wiggle Matching (위글 매치를 이용한 마도4호선의 방사성탄소연대 측정)

  • Nam, Tae Gwang;Hong, Kwang Hui;Lee, Ji Hee
    • Journal of Conservation Science
    • /
    • v.33 no.4
    • /
    • pp.275-281
    • /
    • 2017
  • The purpose of this study was to carry out radiocarbon dating using a wiggle match, of wooden boards and grains from the Mado shipwreck No. 4, which was excavated from Mado in Taean-gun, Chungcheongnam-do. The result of the wiggle matching for four decennial tree-ring samples of the stern plank produced a ${\pm}2{\sigma}$ radiocarbon date (95.4% confidence interval) of A.D. 1337-1356 or A.D. 1412-1429. The grains produced a ${\pm}2{\sigma}$ radiocarbon date (95.4% confidence interval) of A.D. 1415-1455. This indicated that the Mado shipwreck No. 4 belonged to the early or middle of the 15th century. These radiocarbon dating results correlate with the date that was speculated by archaeologists according to the ship's structure and ceramic style.

Species Identification and Radiocarbon Dating for the Wooden Board from Daebudo Shipwreck No.2 Using Wiggle Matching (대부도2호선 목부재의 수종과 위글매치를 이용한 방사성탄소연대 분석)

  • Nam, Tae Gwang;Yoon, Yong Hee;Kim, Eung Ho
    • Journal of Conservation Science
    • /
    • v.34 no.5
    • /
    • pp.359-368
    • /
    • 2018
  • The purpose of this study was to analyze the wood species of the stern plank and persimmon seed from Daebudo shipwreck No.2 excavated from Daebudo, Danwon-gu, Ansan-si, and Gyeonggi-do by wiggle-matching of radiocarbon measurements. Results of the analysis showed that all the wooden boards of the hull were made from Pinus Hard Pine Group. The other parts of hull and wooden pegs were made from Pinus Hard Pine Group, Castanea spp., Quercus spp. sect. Lepidobalanus, Alnus spp., and Zelkova serrata Makino. Excavated wide-tooth wooden comb and fine-tooth bamboo comb were made from Acer spp. and Bambusoideae. Excavated rope was made from Pueraria thunbergiana Benth. The stern plank, wooden support, and persimmon stone showed ${\pm}2{\sigma}$ radiocarbon date(95.4% confidence interval) of AD 1151-1224. This indicated that the Daebudo shipwreck No.2 occurred during the early or middle 12-13th century. Our radiocarbon dating results confirmed the date speculated by archeologists based on the ceramic style.

Late Quaternary Stratigraphy and Depositional Environment of the Yeongsan River Estuary, Southwestern Korea (영산강 하구의 제4기 후기 층서 및 고환경)

  • 남욱현;김주용;양동윤;홍세선;봉필윤;이윤수;유강민;염종권
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.545-556
    • /
    • 2003
  • Detailed interdisciplinary investigations demonstrate that the Yeongsan River estuarine-filled sediments clearly record important paleoenvironmental changes during the Last Glacial and Holocene. The sediments from 18.9 m(20.5∼l.6m in depth) long core MW-1 are differentiated by changes in sedimentary textures and palynomorph assemblages. Chronology was provided by AMS$^{14}$C dating and regional pollen correlation. Three paleoenvironrnental phases are recognized: (1) The Last Glacial deposits consist mainly of fluvial sediments and paleosols, experienced deposition alternating with pedogenesis. The appearance of the paleosols suggests that the paleoclimate might be cold and humid. (2) The early and middle Holocene phase started abruptly in response to the rapid global climatic warming. and is characterized by abundant marine palynomorphs. (3) The late Holocene is marked by more cool conditions. The paleoenvironmental changes recorded in the sediments coincide not only with local but also with broad-scale, probably global climate changes.

Humus Analysis for the Geomorphic Development and Climatic Environment Change of Alluvial Plain in Hampyeongcheon Basin during the Late Holocene (휴무스분석을 이용한 함평천 유역의 홀로세 후기 충적평야의 지형발달과 기후환경변화)

  • Jung, Hea-Kyung;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.33 no.4
    • /
    • pp.320-328
    • /
    • 2012
  • To investigate geomorphic development of alluvial plains and climatic environment change during the late Holocene carbon dating, soil organic carbon analysis and humus analysis of sediments from alluvial plain of Hampyeongcheon basin were performed. The lowest peat layer was formed under warm and humid climates, which is considered to correspond to the Atlantic period in the Holocene. Yellowish brown sandy clay layer was deposited in the natural levee, which we think were deposited in the generally warm and dry climates. The carbon dating age is 1,879-1,532 BC, and this period correspond to the Sub-boreal period in the Holocene. Light brown clay layer is assumed to have been deposited in transitional environment from the natural levee to the back marsh. The climatic environment was warm and humid, which is considered as transitional period from the Sub-boreal to the Sub-Atlantic in the Holocene. Light yellowish brown and light brown clay layer of the upper part are regarded as sediments of the back marsh. Light yellowish brown clay layer was deposited in the cold and dry climates, which is considered to correspond to the Sub-Atlantic period in the Holocene. Light brown clay layer was deposited in the warm and dry climates. The carbon dating age is 211-427 AD, this period corresponds to the Post Roman Warm Period in the Holocene.

Origin of Clay Minerals of Core RS14-GC2 in the Continental Slope to the East of the Pennell-Iselin Bank in the Ross Sea, Antarctica (남극 로스해 펜넬-이젤린 퇴 동쪽 대륙사면의 코어 RS14-GC2의 점토광물의 기원지 연구)

  • Ha, Sangbeom;Khim, Boo-Keun;Cho, Hyen Goo;Colizza, Ester
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A gravity core (RS14-C2) was collected at site RS14-C2 in the continental slope to the east of Pennell-Isellin Bank of the Ross Sea (Antarctica) during PNRA XXIX (Rosslope II Project) Expedition. In order to trace the sediment source, magnetic susceptibility (MS), sand fraction, and clay mineral compositions were analyzed, and AMS $^{14}C$ ages were dated. Core sediments consist mostly of hemipelagic sandy clay or silty clay including ice-rafted debris (IRD). AMS $^{14}C$ age of core-top indicates the modern and Holocene sediments. Based on AMS $^{14}C$ dating, sediment color, MS and sand fraction, core sediments are divided into interglacial and glacial intervals. The interglacial brown sediments are characterized by low MS and sand fraction, whereas the glacial gray sediments are characterized by high MS and sand fraction. Among clay mineral compositions of core sediments, illite is highest (61.8~76.7%), and chlorite (15.7~21.3%), kaolinite (3.6~15.4%), and smectite (0.9~5.1%) are in decreasing order, and these compositions are also divided into the interglacial and glacial/deglacial intervals. During the glacial period, the high content of illite and chlorite indicate sediment supply from the bedrocks of Transantarctic Mountains under the Ross Ice Sheet. In contrast, because of decreasing supply of illite and chlorite by the glacial retreat, smectite and kaolinite contents increased relatively during the interglacial period. During the interglacial period, smectite may be transported additionally by the northeastward flowing surface current from the coast of Victoria Land in the western Ross Sea. Kaolinite may be also supplied to the continental slope by the Antarctic Slope Current from the kaolin-rich metasedimentary rock outcropped on the Edward VII Peninsula.

Vegetation History since the Mid-Lateglacial from Yeongsan River Basin, Southwestern Korea (영산강 유역 범람원 퇴적물의 화분분석 연구)

  • Choi, Kee-Ryong;Kim, Ki-Heon;Kim, Jong-Won;Kim, Jong-Chan;Lee, Gi-Kil;Yang, Dong-Yoon;Nahm, Wook-Hyun
    • The Korean Journal of Ecology
    • /
    • v.28 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • This study presents the Mid-Lateglacial vegetation history of southwestern Korea. From the result of AMS dating and pollen analysis, four local pollen assemblage zones(BS) were recognized. The four local pollen assemblage zones are BS 1. 12,222cal BC$\sim$9,160cal BC: cool-temperate northern/altimontane mixed coniferous & deciduous broad-leaved forest, BS 2. 9,160cal BC$\sim$ 4,210cal BC: cool-temperate central/montane deciduous broad-leaved forest, BS 3. 4,210cal BC$\sim$125cal BC: cool-Temperate southern/submontane mixed coniferous & deciduous broad-leaved forest. BS 4. BC125cal ${\sim}$present: warm-temperate/cool-temperate southern/submontane coniferous forest. Pine forest expanded since 4,210cal BC and full-scale rice cultivation might started since 2,120cal BC. A radical expansion of Pinus densiflora forest after postglacial stage might be caused by human impacts including full-scale agriculture.

Age Dating and Paleoenvironmental Changes of the Kunang Cave Paleolithic Site

  • Yum, Jong-Kwon;Lee, Yung-Jo;Kim, Jong-Chan;Kim, In-Chul;Kim, Ju-Yong
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.145-148
    • /
    • 2003
  • The Kunang cave paleolithic site is located at Tanyang [$N37^{\circ}2'$, $128^{\circ}21'E$], Chungbuk Province, which is in the Central part of the Korean peninsula. The cave is developed at 312 amsl in a karstic mountainous area. The South Han River flows across this region and other caves can also be found near the river. The site was discovered in 1986 and excavated 3 times by the Chungbuk National University Museum until now. The cave was wellpreserved from modem human activities until the first discovery. The full length of the cave is estimated to be ca. 140 m. However, a spacious part up to 11 m from the entrance has been excavated. Eight lithological units are divided over the vertical profile at a depth of 5 m. Each unit is deposited in ascending order as follow: mud layer (Unit 9), lower complex (Unit 8) which is composed of angular blocks and fragments with a muddy matrix, lower travertine layer (Unit 7; flowstone), middle complex (Unit 6; cultural layer) which is composed of fragments with a muddy matrix, middle travertine layer (Unit 5; flowstone), yellowish muddy layer (Unit 4), upper complex (Unit 3; cultural layer) which has a similar composition to Unit 8. the upper travertine layer (Unit 2; flowstone), and finally surface soil layer (Unit 1). The most abundant vestiges in the cultural layers are the animal bones. They are small fractured pieces and mostly less than 3 cm in length. About 3,800 bone pieces from 25 animal species have been collected so far, 90 percent of them belonging to young deers. Previous archaeological study of these bone pieces shows thatprehistoric people occupied the cavenot for permanent dwelling but for temporary shelter during their seasonal hunting activity. More extensive studies of these bones together with pollen analysis are in progress to reconstruct the paleoenvironment of this cave. Only a single date (12,500 BP) obtained from a U-Th measurement of the upper travertine layer was previously available. In spite of the importance of the cave stratigraphy, there was no detail chronological investigation to establish the depositional process of the cultural layers and to understand the periodic structure of the cave strata, alternating travertine floor and complex layers. We have measured five 14C age dating (38900+/-1000, 36400+/-900, 40600+/-1600, more than 51000 and 52000 14C BP) using Seoul National University 14C AMS facility, conducted systematic process of the collagen extraction from bone fragments samples. From the result, we estimate that sedimentation rate of the cave earth is constant, and that the travertine layers, Unit 2 and Unit 3, was formed during MIS 5a(ca. 80 kBP) and MIS 5c (ca. 100 kBP) respectively. The Kunang Cave site is located at Yochonli of the region of Danyang in the mid-eastern part of Korea. This region is compased of limestones in which many caves were found and the Nam-han river flows meanderingly. The excavations were carried out three times in 1986, 1988, and 1998.

  • PDF