DOI QR코드

DOI QR Code

Origin of Clay Minerals of Core RS14-GC2 in the Continental Slope to the East of the Pennell-Iselin Bank in the Ross Sea, Antarctica

남극 로스해 펜넬-이젤린 퇴 동쪽 대륙사면의 코어 RS14-GC2의 점토광물의 기원지 연구

  • Ha, Sangbeom (Department of Oceanography, Pusan National University) ;
  • Khim, Boo-Keun (Department of Oceanography, Pusan National University) ;
  • Cho, Hyen Goo (Department of Geology, Gyeongsang National University) ;
  • Colizza, Ester (Department of Mathematics and Earth Sciences, University of Trieste)
  • Received : 2017.10.12
  • Accepted : 2018.02.08
  • Published : 2018.03.31

Abstract

A gravity core (RS14-C2) was collected at site RS14-C2 in the continental slope to the east of Pennell-Isellin Bank of the Ross Sea (Antarctica) during PNRA XXIX (Rosslope II Project) Expedition. In order to trace the sediment source, magnetic susceptibility (MS), sand fraction, and clay mineral compositions were analyzed, and AMS $^{14}C$ ages were dated. Core sediments consist mostly of hemipelagic sandy clay or silty clay including ice-rafted debris (IRD). AMS $^{14}C$ age of core-top indicates the modern and Holocene sediments. Based on AMS $^{14}C$ dating, sediment color, MS and sand fraction, core sediments are divided into interglacial and glacial intervals. The interglacial brown sediments are characterized by low MS and sand fraction, whereas the glacial gray sediments are characterized by high MS and sand fraction. Among clay mineral compositions of core sediments, illite is highest (61.8~76.7%), and chlorite (15.7~21.3%), kaolinite (3.6~15.4%), and smectite (0.9~5.1%) are in decreasing order, and these compositions are also divided into the interglacial and glacial/deglacial intervals. During the glacial period, the high content of illite and chlorite indicate sediment supply from the bedrocks of Transantarctic Mountains under the Ross Ice Sheet. In contrast, because of decreasing supply of illite and chlorite by the glacial retreat, smectite and kaolinite contents increased relatively during the interglacial period. During the interglacial period, smectite may be transported additionally by the northeastward flowing surface current from the coast of Victoria Land in the western Ross Sea. Kaolinite may be also supplied to the continental slope by the Antarctic Slope Current from the kaolin-rich metasedimentary rock outcropped on the Edward VII Peninsula.

남극 로스해 펜넬-이젤린 퇴의 동쪽 대륙사면에 위치한 정점 RS14-C2에서 2014년 PNRA XXIX 탐사(Rosslope II Project)동안 중력코어(RS14-GC2)를 획득하였다. 퇴적물의 기원지 추정을 위하여 대자율, 모래 입자 함량, 점토광물 조성을 분석하고 AMS $^{14}C$ 연대를 측정하였다. 퇴적물은 주로 빙운쇄설물을 포함한 반원양성 사질 점토 또는 실트질 점토로 구성되어 있다. 코어의 최상부 연대는 현생 퇴적물과 홀로세 퇴적물을 지시한다. 방사성 탄소동위원소 연대와 퇴적물의 색, 대자율 및 모래 입자 함량을 이용하여 코어 퇴적물을 간빙기와 빙하기 퇴적물로 구분하였다. 간빙기의 갈색퇴적물은 대자율과 모래 입자 함량이 낮은 반면에 빙하기의 회색퇴적물은 대자율과 모래 입자 함량이 높다. 코어 퇴적물의 점토광물 조성은 전체적으로 일라이트(61.8~76.7%)가 가장 우세하며, 녹니석(15.7%~21.3%), 카올리나이트(3.6%~15.4%), 그리고 스멕타이트(0.9~5.1%)의 순서로 나타나고, 간빙기와 빙하기/후빙기로 뚜렷하게 구분된다. 빙하기 동안 일라이트와 녹니석 함량이 우세한 것은 퇴적물의 기원지가 주로 로스해 빙상 하부에 위치한 남극종단산맥의 기반암을 지시하기 때문이다. 반면 빙상 후퇴에 의한 일라이트와 녹니석의 공급이 감소되어 간빙기 동안 상대적으로 스멕타이트 함량이 약간 증가하며 카올리나이트 함량은 많이 증가한다. 더불어 간빙기 동안 로스해 서안의 빅토리아랜드 연안의 맥머도 화산군에서 북동쪽으로 흐르는 해류에 의해 스멕타이트가 추가로 공급되며, 카올리나이트는 카올리나이트의 함량이 풍부한 퇴적암이 분포하는 에드워드 7세 반도에서 공급되고 대륙사면류에 의해 대륙사면으로 운반되었을 것으로 예상된다.

Keywords

References

  1. Abreu, V.S. and Anderson, J.B. (1998) Glacial eustasy during the Cenozoic: sequence stratigraphic implications. American Association of Petroleum Geologists Bulletin, 82, 1385-1400.
  2. Anderson, J.B., Brake, C.F., and Myers, N.C. (1984) Sedimentation on the Ross Sea continental shelf, Antarctica. Marine Geology, 57, 295-333. https://doi.org/10.1016/0025-3227(84)90203-2
  3. Anderson, J.B., Lowe, A.L., Mosola, A.B., Shipp, S.S., and Wellner, J.S. (2002) The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quaternary Science Reviews, 21, 49-70. https://doi.org/10.1016/S0277-3791(01)00083-X
  4. Andrews, J.T., Cunningham, W.L., Domack, E.W., Jennings, A.E., Jull, A.T., Leventer, A., and Licht, K.J. (1999) Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctica. Quaternary Research, 52, 206-216. https://doi.org/10.1006/qres.1999.2047
  5. Barker, P.F., Barrett, P.J., Camerlenghi, A., Cooper, A.K., Davey, F.J., Domack, E.W., and O'Brien, P.E. (1998) Ice sheet history from Antarctic continental margin sediments: the ANTOSTRAT approach. Terra Antarctica, 5, 737-760.
  6. Barker, P.F., Barrett, P.J., Cooper, A.K., and Huybrechts, P. (1999) Antarctic glacial history from numerical models and continental margin sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 150, 247-267. https://doi.org/10.1016/S0031-0182(98)00224-7
  7. Bindschadler, R. (1998) Monitoring ice sheet behavior from space. Reviews of Geophysics, 36, 79-104. https://doi.org/10.1029/97RG02669
  8. Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  9. Budillon, G., Castagno, P., Aliani, S., Spezie, G., and Padman, L. (2011) Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep-Sea Research I, 58, 1002-1018. https://doi.org/10.1016/j.dsr.2011.07.002
  10. Chamley, H. (1989). Clay Sedimentology. Springer. Berlin, 623.
  11. Ceccaroni, L., Frank, M., Frignani, M., Langone, L., Ravaioli, M., and Mangini, A. (1998) Late Quaternary fluctuations of biogenic component fluxes on the continental slope of the Ross Sea, Antarctica. Journal of Marine Systems, 17, 515-525. https://doi.org/10.1016/S0924-7963(98)00061-X
  12. Davey, F.J. (1981) Geophysical studies in the Ross Sea region. Journal of the Royal Society of New Zealand, 11, 465-479. https://doi.org/10.1080/03036758.1981.10423336
  13. Denton, G.H. and Hughes, T.J. (2002) Reconstructing the Antarctic ice sheet at the Last Glacial Maximum. Quaternary Science Reviews, 21, 193-202. https://doi.org/10.1016/S0277-3791(01)00090-7
  14. Dingle, R.V. and Lavelle, M. (1998) Antarctic Peninsular cryosphere: Early Oligocene (c. 30 Ma) initiation and a revised glacial chronology. Journal of the Geological Society, 155(3), 433-437. https://doi.org/10.1144/gsjgs.155.3.0433
  15. Domack, E.W., Jacobson, E.A., Shipp, S., and Anderson, J.B. (1999) Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 2-sedimentologic and stratigraphic signature. Geological Society of America Bulletin, 111, 1517-1536. https://doi.org/10.1130/0016-7606(1999)111<1517:LPHROT>2.3.CO;2
  16. Drewry, D.J. (1983) The surface of the Antarctic ice-sheet, Antarctica: Glaciological and Geophysical Folio, Cambridge, University of Cambridge, Scott Polar Research Institute, Sheet 2.
  17. Dunbar, R.B., Leventer, A.R., and Stockton, W.L. (1989) Biogenic sedimentation in McMurdo Sound, Antarctica. Marine Geology, 85, 155-179. https://doi.org/10.1016/0025-3227(89)90152-7
  18. Ehrmann, W.U. (1998). Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 213-231. https://doi.org/10.1016/S0031-0182(97)00138-7
  19. Ehrmann, W.U. and Mackensen, A. (1992) Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time. Palaeogeography, Palaeoclimatology, Palaeoecology, 93, 85-112. https://doi.org/10.1016/0031-0182(92)90185-8
  20. Ehrmann, W.U., Graham, A.G., Hillenbrand, C.D., Kuhn, G., Larter, R.D., and Smith, J.A. (2011) Provenance changes between recent and glacial-time sediments in the Amundsen Sea embayment, West Antarctica: clay mineral assemblage evidence. Antarctic Science, 23, 471-486. https://doi.org/10.1017/S0954102011000320
  21. Ehrmann, W.U., Grobe, H., Kuhn, G., and Melles, M. (1992) Significance of clay mineral assemblages in the Antarctic Ocean. Marine Geology, 107, 249-273. https://doi.org/10.1016/0025-3227(92)90075-S
  22. Ehrmann, W.U, Marinoni, L., and Setti, M. (2005) Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history. Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 187-211. https://doi.org/10.1016/j.palaeo.2005.06.022
  23. Fagel, N. (2007). Chapter four clay minerals, deep circulation and climate. Developments in Marine Geology, 1, 139-184.
  24. Folk, R.L. and Ward, W.C. (1957) Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Research, 27, 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  25. Forsberg, C.F., Florindo, F., Gruetzner, J., Venuti, A., and Solheim, A. (2008) Sedimentation and aspects of glacial dynamics from physical properties, mineralogy and magnetic properties at ODP Sites 1166 and 1167, Prydz Bay, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 184-201. https://doi.org/10.1016/j.palaeo.2007.08.022
  26. Franke, D. and Ehrmann, W.U. (2010) Neogene clay mineral assemblages in the AND-2A drill core (McMurdo Sound, Antarctica) and their implications for environmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 286, 55-65. https://doi.org/10.1016/j.palaeo.2009.12.003
  27. Friedman G.M. and Sanders J.E. (1978) Principles of sedimentology. Wiley, New York, 792.
  28. Frignani, M., Giglio, F., Accornero, A., Langone, L., and Ravaioli, M. (2003) Sediment characteristics at selected sites of the Ross Sea continental shelf: does the sedimentary record reflect water column fluxes? Antarctic Science, 15, 133-139. https://doi.org/10.1017/S0954102003001123
  29. Giorgetti, G., Talarico, F., Sandroni, S., and Zeoli, A. (2009) Provenance of Pleistocene sediments in the ANDRILL AND-1B drillcore: Clay and heavy mineral data. Global and Planetary Change, 69, 94-102. https://doi.org/10.1016/j.gloplacha.2009.03.018
  30. Grobe, H. and Mackensen, A. (1992) Late Quaternary climatic cycles as recorded in sediments from the Antarctic continental margin. The Antarctic Paleoenvironment: A Perspective on Global Change: Part One, 349-376.
  31. Hall, B.L., Henderson, G.M., Baroni, C., and Kellogg, T.B. (2010) Constant Holocene Southern-Ocean 14 C reservoir ages and ice-shelf flow rates. Earth and Planetary Science Letters, 296, 115-123. https://doi.org/10.1016/j.epsl.2010.04.054
  32. Hambrey, M.J., Ehrmann, W.U., and Larsen, B. (1991) Cenozoic glacial record of the Prydz Bay continental shelf, East Antarctica. In: Barron, J; Larsen, B, et al.(eds.), Proceedings ODP, Scientific Results, 119, 77-132.
  33. Hillenbrand C.D. and Ehrmann W.U. (2001) Distribution of clay minerals in drift sediments on the continental rise west ofthe Antarctic Peninsula, ODP Leg 178, Sites 1095 and 1096. In: Barker PF, Camerlenghi A, Acton GD, Ramsay ATS (eds.), Proceedings ODP, Scientific Results 178, 1-29.
  34. Hillenbrand, C.D., Benetti, S., Cofaigh, C.Ó., Dowdeswell, J.A., Ehrmann, W.U., Grobe, H., and Larter, R.D. (2009) Clay mineral provenance of sediments in the southern Bellingshausen Sea reveals drainage changes of the West Antarctic Ice Sheet during the Late Quaternary. Marine Geology, 265, 1-18. https://doi.org/10.1016/j.margeo.2009.06.009
  35. Hillenbrand, C.D., Diekmann, B., Fütterer, D.K., Grobe, H., and Kuhn, G. (2003) Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica)-Relation to modern environmental conditions. Marine Geology, 193, 253-271. https://doi.org/10.1016/S0025-3227(02)00659-X
  36. Hillenbrand, C.D., Frederichs, T., Fütterer, D.K., and Grobe, H. (2002) No evidence for a Pleistocene collapse of the West Antarctic Ice Sheet from continental margin sediments recovered in the Amundsen Sea. Geo-marine Letters, 22, 51-59. https://doi.org/10.1007/s00367-002-0097-7
  37. Hillier S. (1995) Erosion, sedimentation, and sedimentary origin of clays. In Origin and mineralogy of clays, clays and the environment, edited by Velde B. Berlin: Springer-Verlag, 162-219.
  38. Howat, I.M. and Domack, E.W. (2003) Reconstructions of western Ross Sea palaeo-ice-stream grounding zones from high-resolution acoustic stratigraphy. Boreas, 32, 56-75. https://doi.org/10.1111/j.1502-3885.2003.tb01431.x
  39. Jacobs, S.S. (1991) On the nature and significance of the Antarctic Slope Front. Marine Chemistry, 35, 9-24. https://doi.org/10.1016/S0304-4203(09)90005-6
  40. Kyle, P.R. (1990) The McMurdo Volcanic Group- Western Ross Embayment, in LeMasurier, W.E., and Thomson, J.W., (eds.), Volcanoes of the Antarctic plate and southern oceans: American Geophysical Union Antarctic Research Series, vol 48, 19-134.
  41. Langone, L., Frignani, M., Labbrozzi, L., and Ravaioli, M. (1998) Present-day biosiliceous sedimentation in the northwestern Ross Sea, Antarctica. Journal of Marine Systems, 17, 459-470. https://doi.org/10.1016/S0924-7963(98)00058-X
  42. Larter, R.D. and Barker, P.F. (1991) Effects of ridge crest-trench interaction on Antarctic-Phoenix spreading: forces on a young subducting plate. Journal of Geophysical Research, 96(B12), 19583-19607. https://doi.org/10.1029/91JB02053
  43. Licht, K.J. and Andrews, J.T. (2002) The 14 C record of Late Pleistocene ice advance and retreat in the central Ross Sea, Antarctica. Arctic, Antarctic, and Alpine Research, 34, 324-333. https://doi.org/10.2307/1552491
  44. Licht, K.J., Andrews, J.T., Dunbar, N.W., and Jennings, A.E. (1999) Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: Implications for a last glacial maximum grounding line. Geological Society of America Bulletin, 111, 91-103. https://doi.org/10.1130/0016-7606(1999)111<0091:DSTAGM>2.3.CO;2
  45. Licht, K.J., Andrews, J.T., Jennings, A.E., and Williams, K.M. (1996) Chronology of late Wisconsin ice retreat from the western Ross Sea, Antarctica. Geology, 24, 223-226. https://doi.org/10.1130/0091-7613(1996)024<0223:COLWIR>2.3.CO;2
  46. Mackensen, A. (2004) Changing Southern Ocean palaeocirculation and effects on global climate. Antarctic Science, 16, 369-386. https://doi.org/10.1017/S0954102004002202
  47. Orsi, A.H. and Wiederwohl, C.L. (2009) A recount of Ross Sea waters. Deep-Sea Research II, 56, 778-795. https://doi.org/10.1016/j.dsr2.2008.10.033
  48. Orsi, A.H., Bullister, J.L., and Johnson, G.C. (1999) Circulation, mixing, and production of Antarctic Bottom Water. Progress in Oceanography, 43, 55-109. https://doi.org/10.1016/S0079-6611(99)00004-X
  49. Orsi, A.H., Nowlin, W.D., and Whitworth, T. (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research I, 42, 641-673. https://doi.org/10.1016/0967-0637(95)00021-W
  50. Pankhurst, R.J., Weaver, S.D., Bradshaw, J.D., Storey, B.C., and Ireland, T.R. (1998) Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica. Journal of Geophysical Research, 103(B2), 2529-2547. https://doi.org/10.1029/97JB02605
  51. Passel, C.F. (1945) Sedimentary Rocks of the Southern Edsel Ford Ranges, Marie Byrd Land, Antarctica. Proceedings of the American Philosophical Society, 89, 123-131.
  52. Petschick, R., Kuhn, G., and Gingele, F. (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology, 130, 203-229. https://doi.org/10.1016/0025-3227(95)00148-4
  53. Pudsey, C.J., Barker, P.F., and Larter, R.D. (1994) Ice sheet retreat from the Antarctic Peninsula shelf. Continental Shelf Research, 14, 1647-1675. https://doi.org/10.1016/0278-4343(94)90041-8
  54. Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B. (2013) Ice-shelf melting around Antarctica. Science, 341, 266-270. https://doi.org/10.1126/science.1235798
  55. Robert, C. and Chamley, H. (1991) Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 89, 315-331. https://doi.org/10.1016/0031-0182(91)90169-R
  56. Robert, C. and Maillot, H. (1990) Paleoenvironments in the Weddell Sea area and Antarctic climates, as deduced from clay mineral associations and geochemical data, ODP Leg 113. Proceedings ODP, Scientific Results, Vol. 113, 51-66.
  57. Salvi, C., Busetti, M., Marinoni, L., and Brambati, A. (2006) Late Quaternary glacial marine to marine sedimentation in the Pennell Trough (Ross Sea, Antarctica). Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 199-214. https://doi.org/10.1016/j.palaeo.2005.07.034
  58. Shipp, S., Anderson, J.B., and Domack, E.W. (1999) Seismic signature of the Late Pleistocene fluctuation of the West Antarctic Ice Sheet system in Ross Sea: a new perspective, Part I. Geological Society of America Bulletin, 111, 1486-1516. https://doi.org/10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2
  59. Smellie, J.L. (1998) Sand grain detrital modes in CRP-1: provenance variations and influence of Miocene eruptions on the marine record in the McMurdo Sound region. Terra Antartica, 5, 579-587.
  60. Stokke, P.R. and Carson, B. (1973) Variation in clay mineral X-ray diffraction results with the quantity of sample mounted. Journal of Sedimentary Research, 43. 957-964.
  61. Sturman, A.P. and Anderson, M.R. (1986) On the sea-ice regime of the Ross Sea, Antarctica. Journal of Glaciology, 32, 54-59. https://doi.org/10.1017/S0022143000006870

Cited by

  1. 남극 로스해 대륙대 플라이스토세 코어 퇴적물의 점토광물학적 특성 및 기원지 연구 vol.32, pp.3, 2019, https://doi.org/10.9727/jmsk.2019.32.3.163
  2. 벨링스하우젠 해의 동쪽 대륙붕과 대륙대의 코어의 점토광물을 이용한 기원지 연구 vol.32, pp.3, 2019, https://doi.org/10.9727/jmsk.2019.32.3.173
  3. 남극 로스해 대륙주변부 중앙분지의 점토광물 조성을 통한 기원 추적 vol.41, pp.4, 2018, https://doi.org/10.4217/opr.2019.41.4.265