• Title/Summary/Keyword: AMP-activated protein kinase(AMPK)

Search Result 191, Processing Time 0.027 seconds

Cryptotanshinone promotes brown fat activity by AMPK activation to inhibit obesity

  • Jie Ni;Aili Ye;Liya Gong;Xiafei Zhao;Sisi Fu;Jieya Guo
    • Nutrition Research and Practice
    • /
    • v.18 no.4
    • /
    • pp.479-497
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Activating brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can protect against obesity and obesity-related metabolic conditions. Cryptotanshinone (CT) regulates lipid metabolism and significantly ameliorates insulin resistance. Adenosine-5'-monophosphate (AMP)-activated protein kinase (AMPK), a receptor for cellular energy metabolism, is believed to regulate brown fat activity in humans. MATERIALS/METHODS: The in vivo study included high-fat-fed obese mice administered orally 200/400 mg/kg/d CT. They were evaluated through weight measurement, the intraperitoneal glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test (IPITT), cold stimulation test, serum lipid (total cholesterol, triglycerides, and low-density lipoprotein) measurement, hematoxylin and eosin staining, and immunohistochemistry. Furthermore, the in vitro study investigated primary adipose mesenchymal stem cells (MSCs) with incubation of CT and AMPK agonists (acadesine)/inhibitor (Compound C). Cells were evaluated using Oil Red O staining, Alizarin red staining, flow cytometry, and immunofluorescence staining to identify and observe the osteogenic versus adipogenic differentiation. Quantitative real-time polymerase chain reaction and the Western blot were used to observe related gene expression. RESULTS: In the diet-induced obesity mouse model mice CT suppressed body weight, food intake, glucose levels in the IPGTT and IPTT, serum lipids, the volume of adipose tissue, and increased thermogenesis, uncoupling protein 1, and the AMPK pathway expression. In the in vitro study, CT prevented the formation of lipid droplets from MSCs while activating brown genes and the AMPK pathway. AMPK activator enhanced CT's effects, while the AMPK inhibitor reversed the effects of CT. CONCLUSION: CT promotes adipose tissue browning to increase body thermogenesis and reduce obesity by activating the AMPK pathway. This study provides an experimental foundation for the use of CT in obesity treatment.

Tschimganidine reduces lipid accumulation through AMPK activation and alleviates high-fat diet-induced metabolic diseases

  • Min-Seon Hwang;Jung-Hwan Baek;Jun-Kyu Song;In Hye Lee;Kyung-Hee Chun
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.246-251
    • /
    • 2023
  • Obesity increases the risk of mortality and morbidity because it results in hypertension, heart disease, and type 2 diabetes. Therefore, there is an urgent need for pharmacotherapeutic drugs to treat obesity. We performed a screening assay using natural products with anti-adipogenic properties in 3T3-L1 cells and determined that tschimganidine, a terpenoid from the Umbelliferae family, inhibited adipogenesis. To evaluate the anti-obesity effects of tschimganidine in vivo. Mice were fed either a normal chow diet (NFD) or a high-fat chow diet (HFD) with or without tschimganidine for 12 weeks. Treatment with tschimganidine decreased lipid accumulation and adipogenesis, accompanied by reduced expression of adipogenesis and lipid accumulation-related factors. Tschimganidine significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and decreased that of AKT. Depletion of AMPK relieved the reduction in lipid accumulation resulting from tschimganidine treatment. Moreover, tschimganidine administration drastically reduced the weight and size of both gonadal white adipose tissue (WAT) and blood glucose levels in high-fat diet-induced obese mice. We suggest that tschimganidine is a potent anti-obesity agent, which impedes adipogenesis and improves glucose homeostasis. Tschimganidine can then be evaluated for clinical application as a therapeutic agent.

Hepato-Protective Activities of Jasminum officinale L. var. grandiflorum Aqueous Extract via Activation of AMPK in HepG2 Cells (AMPK 활성화를 통한 소형화(素馨花) (Jasminum officinale L. var. grandiflorum) 열수 추출물의 HepG2 간세포 보호 활성)

  • Sang Mi Park;Dae Hwa Jung;Byung Gu Min;Kyung Hwan Jegal;Sung Hui Byun;Jae Kwang Kim;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.231-243
    • /
    • 2023
  • Objectives : Jasminum officinale L. var. grandiflorum is used as a traditional or folk remedy in China to treat arthritis, hepatitis, duodenitis, conjunctivitis, gastritis, and diarrhea. In this study, we aimed to study the hepatocyte protective activity and molecular mechanism of Jasminum officinale L. var. grandiflorum aqueous extract (JGW) using HepG2 hepatocyte cell lines. Methods : HepG2 cells were pretreated with diverse concentrations of JGW, and then the cells were exposed to tert-butyl hydroperoxide (tBHP) for inducing oxidative stress. Hydrogen peroxide (H2O2) production, glutathione (GSH) concentration, mitochondrial membrane potential (MMP) and cell viability were measured to investigate hepato-protective effects of JGW. Phosphorylation of AMP-activated protein kinases (AMPK), acetyl coenzyme A carboxylase (ACC) and effects of compound C on cell viability were examined to observe the role of AMPK on JGW-mediated cytoprotection. Results : Pretreatment with JGW (10-300 ㎍/mL) significantly suppressed cytotoxicity induced by tBHP in a concentration dependent manner and reduced the expression of cleaved PARP and cleaved caspase-3 proteins related to apoptosis in HepG2 cells. In addition, pretreatment with JGW significantly prevented the increase in H2O2 production, GSH depletion, and lower MMP induced by tBHP. Treatment with JGW (30 minutes of incubation and concentrations of 100 and 300 ㎍/mL) increased the phosphorylation of AMPK and ACC and treatment with compound C, a chemical inhibitor of AMPK, inhibited the cytoprotective effect of JGW. Conclusions : Our results demonstrated that JGW may protect hepatocytes from oxidative stress via activation of AMPK.

AMP-activated protein kinase: implications on ischemic diseases

  • Ahn, Yong-Joo;Kim, Hwe-Won;Lim, Hee-Jin;Lee, Max;Kang, Yu-Hyun;Moon, Sang-Jun;Kim, Hyeon-Soo;Kim, Hyung-Hwan
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.489-495
    • /
    • 2012
  • Ischemia is a blockage of blood supply due to an embolism or a hemorrhage in a blood vessel. When an organ cannot receive oxygenated blood and can therefore no longer replenish its blood supply due to ischemia, stresses, such as the disruption of blood glucose homeostasis, hypoglycemia and hypoxia, activate the AMPK complex. LKB1 and $CaMKK{\beta}$ are essential activators of the AMPK signaling pathway. AMPK triggers proangiogenic effects through the eNOS protein in tissues with ischemic conditions, where cells are vulnerable to apoptosis, autophagy and necrosis. The AMPK complex acts to restore blood glucose levels and ATP levels back to homeostasis. This review will discuss AMPK, as well as its key activators (LKB1 and $CaMKK{\beta}$), as a central energy regulator and evaluate the upstream and downstream regulating pathways of AMPK. We will also discuss how we can control this important enzyme in ischemic conditions to prevent harmful effects in patients with vascular damage.

Identification of AMPK activator from twelve pure compounds isolated from Aralia Taibaiensis: implication in antihyperglycemic and hypolipidemic activities

  • Li, Yuwen;Park, Jongsun;Wu, Yin;Cui, Jia;Jia, Na;Xi, Miaomiao;Wen, Aidong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • The root bark extract of Aralia taibaiensis is used traditionally for the treatment of diabetes mellitus in China. The total saponin extracted from Aralia Taibaiensis (sAT) has effective combined antihyperglycemic and hypolipidemic activities in experimental type 2 diabetic rats. However, the active compounds have not yet been fully investigated. In the present study, we examined effects of twelve triterpenoid saponins on AMP-activated protein kinase (AMPK) activation, and found that compound 28-O-${\beta}$-D-glucopyranosyl ester (AT12) significantly increased phosphorylation of AMPK and Acetyl-CoA carboxylase (ACC). AT12 effectively decreased blood glucose, triglyceride (TG), free fatty acid (FFA) and low density lipoprotein-cholesterol (LDL-C) levels in the rat model of type 2 diabetes mellitus (T2DM). The mechanism by which AT12 activated AMPK was subsequently investigated. Intracellular ATP level and oxygen consumption were significantly reduced by AT12 treatment. The findings suggested AT12 was a novel AMPK activator, and could be useful for the treatment of metabolic diseases.

Anti-oxidant Effect on Stevia rebaudiana (Stevia rebaudiana의 항산화 효과)

  • Jung, Eun Hye;Seo, Hye Lim;Kim, Min Gyu;Kim, Young Woo;Cho, Il Je
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.764-770
    • /
    • 2013
  • Stevia rebaudiana is a traditional herb used as a sweetener in Brazil and Paraguay as well as Korea and China. This study investigated the efficacy of Stevia rebaudiana methanol extract (SRE) to protect cells against the mitochondrial dysfunction and apoptosis in hepatocyte. To determine the effects of SRE on oxidative stress, we used the human derived hepatocyte cell line, HepG2 cell. Treatment of arachidonic acid (AA)+iron in HepG2 cells synergistically amplified cytotoxicity, as indicated by the excess reactive oxygen species (ROS) and mitochondrial permeability transition by fluorescence activated cell sorter (FACS) and immunoblot analysis. Treatment with SRE protected hepatocytes from AA+iron-induced cellular toxicity, as shown by alterations in the protein levels related with cell viability such as procaspase-3. SRE also prevented the mitochondrial dysfunction induced by AA+iron, and showed anti-oxidant effects as inhibition of $H_2O_2$ production and GSH depletion. Moreover, we measured the effects of SRE on AMP-activated protein kinase (AMPK), a key regulator in determining cell survival or death. Acetyl-CoA Carboxylase (ACC), a direct downstream target of AMPK. SRE increased phosphorylation of ACC, and prevented the inhibition of ACC phosphorylation by AA+iron. These results indicated that SRE has the ability to protect cells against AA+iron-induced $H_2O_2$ production and mitochondrial impairment, which may be mediated with AMPK-ACC pathway.

Effects of Fructus Piperis Longi Extracts on Glucose Uptake in Adipocyte (필발 추출물의 포도당 흡수능에 대한 효과)

  • Kim, Mi Seong;Kwon, Kang Beom;Song, Je Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.59-62
    • /
    • 2014
  • Glucose uptake plays a pivotal role in maintaining whole body glucose homeostasis in adipocytes and skeletal muscles. In the present study we have shown that Fructus Piperis Longi Extracts (FPLE) can stimulate glucose uptake in OP9 adipocytes. The increasing effects of FPLE on glucose uptake were inhibited by compound C pretreatment, which means that the glucose uptake effects by FPLE were carried out by AMP-activated protein kinase (AMPK) activation. Further studies revealed that FPLE stimulated glucose transport occurs through a mechanism involving extracellular signal-regulated kinase (ERK1/2) activation.

Anti-Obesity Effect of Schizandrae Fructus Water Extract through Regulation of AMPK/Sirt1/PGC-1α signaling pathway (AMPK/Sirt1/PGC-1α 신호 전달 경로의 조절을 통한 오미자 추출물의 비만 개선 효과)

  • Lee, Se Hui;Park, Hae-Jin;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives : Although the anti-obesity effect of Schizandrae Fructus water extract has been demonstrated, its underlying mechanism is still unclear. Therefore, we aimed to evaluate the anti-obesity effect of Schizandrae Fructus water extract through the p-AMP-activated protein kinase (p-AMPK), sirtuin1 (Sirt1), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in 60% high-fat diet (HFD)-induced obese mouse model. Methods : Male C57BL/6 mice were divided into four groups. The Normal group was fed a normal diet and the obese groups were fed 60% HFD. Except for the Control group, the GG group was supplemented with 0.5% Garcinia gummigutta and the SCW group was supplemented with 0.5% Schizandrae Fructus water extract. After 6 weeks, obesity-related biomarkers in serum were measured and the expressions of protein for lipid-related factors in liver tissue were analyzed by western blot. Results : Treatment with SCW significantly down-regulated body weight compared to the Control group. SCW down-regulated levels of triglyceride and total cholesterol in serum and significantly increased p-AMPK, Sirt1, and PGC-1α in liver tissue. In addition, the expressions of fatty acid oxidation-related proteins such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A (CPT-1A), uncoupling protein 1 (UCP1), and uncoupling protein 3 (UCP3) were significantly up-regulated. However, fatty acid synthesis-related proteins including sterol regulatory element-binding protein-1 (SREBP-1), phospho-Acetyl-CoA Carboxylase (p-ACC), and fatty acid synthase (FAS) were significantly down-regulated. Conclusions : Taken together, SCW treatment showed anti-obesity effect by regulating both fatty acid oxidation-related and fatty acid synthesis-related proteins through AMPK/Sirt1/PGC-1α signaling in 60% HFD-induced obese mice.

Pharmacokinetic and Pharmacodynamic Interaction between Metformin and (-)-Epigallocatechin-3-gallate

  • Ko, Jeong-Hyeon;Jang, Eun-Hee;Park, Chang-Shin;Kim, Hyoung-Kwang;Cho, Soon-Gu;Shin, Dong-Wun;Yi, Hyeon-Gyu;Kang, Ju-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.298-303
    • /
    • 2009
  • (-)-Epigallocatechin-3-gallate (EGCG), a major flavonoid in green tea has multiple health benefits including chemoprevention, anti-inflammatory, anti-diabetic, and anti-obesity effects. In connection with these effects, EGCG can be a candidate to help the treatment of metabolic diseases. Metformin is a widely used anti-diabetic drug regulating cellular energy homeostasis via AMP-activated protein kinase (AMPK) activation. Therefore, the combination of metformin with EGCG may have additive or synergistic effects on treatment of type 2 diabetes. Nevertheless, there is no report for the pharmacokinetic and/or pharmacodynamic interaction of EGCG with metformin. Here, we evaluated the pharmacokinetic and pharmacodynamic interaction between metformin and EGCG in rats. Pharmacokinetics parameters of metformin were measured after oral administration of metformin in rats pre-treated with EGCG (10 mg/kg) or saline for 7 days. The results showed that there is no significant difference in pharmacokinetic parameters between saline control and EGCG-treated group. In addition, the hepatic AMPK activation by metformin in EGCG-treated rats was also similar to the control. The lack of additive effects of EGCG on AMPK activation or intracellular uptake of metformin was also evaluated in cells in the presence or absence of EGCG. Treatment of HepG2 cells with EGCG inhibited the metformin-induced AMPK activation. Combined results suggested that EGCG has no effect on the pharmacokinetics of metformin but may contribute to metformin action.

Effects of Essential Oils Extracted from Cnidii Rhizoma on Differentiation and Adipogenesis in 3T3-L1 Adiopocytes (천궁(川芎)의 정유 추출물이 3T3-L1 세포의 분화 및 지방 생성에 미치는 영향)

  • Choi, Soo-Min;Kim, So-Young;Park, Na-Ri;Kim, Jung-Min;Yang, Doo-Hwa;Woo, Chang-Hoon;Kim, Mi-Ryeo;An, Hee-Duk
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.28 no.3
    • /
    • pp.13-25
    • /
    • 2018
  • Objectives We investigated anti-obesity effects of essential oils extracted from Cnidii Rhizoma (CR) in immature adipocytes to magnify it's clinical therapeutic usage. Methods Essential oil of CR was extracted with ethyl acetate or petroleum ether and through steam distillation, respectively. Oil red-O staining for monitoring its inhibition effect on adipogenesis and differentiation in murine 3T3-L1 adipocytes and 3-(4,5-methylthiazol-2-yl)-2,5-diphenyletetra zolium bromide (MTT) assay for cell safety were done. Also phospho-adenosine monophosphate (AMP)-activted protein kinase (P-AMPK), AMP-activated protein kinase, phospho-acetyl-CoA carboxylase (P-ACC), acetyl-CoA carboxylase, peroxisome proliferator-activated receptor-${\alpha}$ (PPAR-${\alpha}$), peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$) and CCAAT/enhancer binding protein ${\alpha}$ (C/EBP-${\alpha}$) expressions as obesity-related factors were measured by western blot analysis. Results Protein expressions of P-AMPK, P-ACC and PPAR-${\alpha}$ were increased in essential oils-treated adipocytes compared to those of control group, respectively. Furthermore, protein expressions of PPAR-${\gamma}$ and C/EBP-${\alpha}$ were decreased in essential oils-treated adipocytes compared to those of control group, respectively. Conclusions These results demonstrate that essential oils of CR inhibit adipogenesis and differentiation. Also they promote the oxidation of fatty acids in adipocytes. Thus, results suggest that essential oils of CR could be used as a valuable material for anti-obesity therapeutics via control of lipid metabolism.