• Title/Summary/Keyword: AMP(Amplifier)

Search Result 118, Processing Time 0.021 seconds

A Study on The IC Design of 1[V] CMOS Operational Amplifier with Rail-to-rail Output Ranges (Rail-to-rail 출력을 갖는 1[V] CMOS Operational Amplifiler 설계 및 IC 화에 관한 연구)

  • Jeon, Dong-Hwan;Son, Sang-Hui
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.461-466
    • /
    • 1999
  • A CMOS op amp with rail-to-rail input and output ranges is designed in a one-volt supply. The output stage of the op amp is used in a common source amplifier that operates in sub-threshold region to design a low voltage op amp with rail-to-tail output range. To drive heavy resistor and capacitor loads with rail-to-rail output ranges, a common source amplifier which has a low output resistance is utilized. A bulk-driven differential pair and a bulk-driven folded cascode amplifier are used in the designed op amp to increase input range and achieve 1 V operation. Post layout simulation results show that low frequency gain is about 58 ㏈ and gain bandwidth I MHz. The designed op amp has been fabricated in a 0.8${\mu}{\textrm}{m}$ standard CMOS process. The measured results show that this op amp provides rail-to-rail output range, 56㏈ dc gain with 1 MΩ load and has 0.4 MHz gain-bandwidth with 130 ㎊ and 1 kΩ loads.

  • PDF

A Design of Novel Instrumentation Amplifier Using a Fully-Differential Linear OTA (완전-차동 선형 OTA를 사용한 새로운 계측 증폭기 설계)

  • Cha, Hyeong-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • A novel instrumentation amplifier (IA) using fully-differential linear operational transconductance amplifier (FLOTA) for electronic measurement systems with low cost, wideband, and gain control with wide range is designed. The IA consists of a FLOTA, two resistor, and an operational amplifier(op-amp). The principal of the operating is that the difference of two input voltages applied into FLOTA converts into two same difference currents, and then these current drive resistor of (+) terminal and feedback resistor of op-amp to obtain output voltage. To verify operating principal of the IA, we designed the FLOTA and realized the IA used commercial op-amp LF356. Simulation results show that the FLOTA has linearity error of 0.1% and offset current of 2.1uA at input dynamic range ${\pm}3.0V$. The IA had wide gain range from -20dB to 60dB by variation of only one resistor and -3dB frequency for the 60dB was 10MHz. The proposed IA also has merits without matching of external resistor and controllable offset voltage using the other resistor. The power dissipation of the IA is 105mW at supply voltage of ${\pm}5V$.

A High Voltage CMOS Rail-to-Rail Input/Output Operational Amplifier with Gain enhancement (전압 이득 향상을 위한 고전압 CMOS Rail-to-Rail 입/출력 OP-AMP 설계)

  • An, Chang-Ho;Lee, Seung-Kwon;Jun, Young-Hyun;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.61-66
    • /
    • 2007
  • A gain enhancement rail-to-rail buffer amplifier for liquid crystal display (LCD) source driver is proposed. An op-amp with extremely high gain is needed to decrease the offset voltage of the buffer amplifier. Cascoded floating current source and class-AB control block in the op-amp achieve a high voltage gain by reducing the channel length modulation effect in high voltage technologies. HSPICE simulation in $1\;{\mu}V$ 15 V CMOS process demonstrates that voltage gain is increased by 30 dB. The offset voltage is improved from 6.84 mV to $400\;{\mu}V$. Proposed op-amp is fabricated in an LCD source driver IC and overall system offset voltage is decreased by 2 mV.

Design, Linear and Efficient Analysis of Doherty Power Amplifier for IMT-2000 Base Station (IMT-2000 기지국용 도허티 전력증폭기의 설계 및 선형성과 효율 분석)

  • Kim Seon-Keun;Kim Ki-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.262-267
    • /
    • 2005
  • During several method of improvement efficient, We analyzed Doherty Amplifier That used by simple circuit and 180w PEP LDMOS to analyze improvement of efficient and linearity. We for testing performance of Doherty Amplifier compared with Balanced Class AB, the experimental results show when Peaking Amp $V_gs.P$=1.53V, the efficiency is increased at Maximum 11.6$\%$. After finding optimum bias point of linearity improvement by manual tuning gate bias, when WCDMA 4FA $V_gs.P$=3.68V IMSR could be increased maximum 3.34dB. especially, when we match bias point of Peaking amp at 1.53V, we could get a excellent efficiency increase and have fUR under -3203c at output power 43dBm.

Design of a Novel Instrumentation Amplifier using Current-conveyor(CCII) (전류-컨베이어(CCII)를 사용한 새로운 계측 증폭기 설계)

  • CHA, Hyeong-Woo;Jeong, Tae-Yun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.80-87
    • /
    • 2013
  • A novel instrumentation amplifier(IA) using positive polarity current-conveyor(CCII+) for electronic measurement systems with low cost, wideband, and gain control with wide range is designed. The IA consists of two CCII+, three resistor, and an operational amplifier(op-amp). The principal of the operating is that the difference of two input voltages applied into two CCII+ used voltage and current follower converts into same currents, and then these current drive resistor of (+) terminal and feedback resistor of op-amp to obtain output voltage. To verify operating principal of the IA, we designed the CCII+ and used commercial op-amp LF356. Simulation results show that voltage follower used CCII+ has offset voltage of 0.21mV at linear range of ${\pm}$4V. The IA had wide gain range from -20dB to 60dB by variation of only one resistor and -3dB frequency for the gain of 60dB was 400kHz. The IA also has merits without matching of external resistor and controllable offset voltage using the other resistor. The power dissipation of the IA is 130mW at supply voltage of ${\pm}$5V.

Comparative Analysis and Performance Evaluation of New Low-Power, Low-Noise, High-Speed CMOS LVDS I/O Circuits (저 전력, 저 잡음, 고속 CMOS LVDS I/O 회로에 대한 비교 분석 및 성능 평가)

  • Byun, Young-Yong;Kim, Tae-Woong;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.26-36
    • /
    • 2008
  • Due to the differential and low voltage swing, Low Voltage Differential Signaling(LVDS) has been widely used for high speed data transmission with low power consumption. This paper proposes new LVDS I/O interface circuits for more than 1.3 Gb/s operation. The LVDS receiver proposed in this paper utilizes a sense amp for the pre-amp instead of a conventional differential pre-amp. The proposed LVDS allows more than 1.3 Gb/s transmission speed with significantly reduced driver output voltage. Also, in order to further improve the power consumption and noise performance, this paper introduces an inductance impedance matching technique which can eliminate the termination resistor. A new form of unfolded impedance matching method has been developed to accomplish the impedance matching for LVDS receivers with a sense amplifier as well as with a differential amplifier. The proposed LVDS I/O circuits have been extensively simulated using HSPICE based on 0.35um TSMC CMOS technology. The simulation results show improved power gain and transmission rate by ${\sim}12%$ and ${\sim}18%$, respectively.

A 1.5 V High-Cain High-Frequency CMOS Complementary Operational Amplifier

  • Park, Kwangmin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper, a 1.5 V high-gain high-frequency CMOS complementary operational amplifier is presented. The input stage of op-amp is designed for supporting the constant transconductance on the Input stage by consisting of the parallel-connected rail-to-rail complementary differential pairs. And consisting of the class-AB rail-to-rail output stage using the concept of elementary shunt stage and the grounded-gate cascode compensation technique for improving the low PSRR which was a disadvantage in the general CMOS complementary input stage, the load dependence of open loop gain and the stability of op- amp on the output load are improved, and the high-gain high-frequency operation can be achieved. The designed op-amp operates perfectly on the complementary mode with the 180° phase conversion for a 1.5 V supply voltage, and shows the DC open loop gain of 84 dB, the phase margin of 65°, and the unity gain frequency of 20 MHz. In addition, the amplifier shows the 0.1 % settling time of .179 ㎲ for the positive step and 0.154 ㎲ for the negative step on the 100 mV small-signal step, respectively, and shows the total power dissipation of 8.93 mW.

  • PDF

A CMOS Op-amp Design of Improved Common Mode Feedback(CMFB) Circuit for High-frequency Filter Implementation (고주파용 필터구현을 위한 개선된 CMFB회로를 이용한 CMOS Op-amp 설계)

  • Lim, Dae-Sung;Choi, Young-Jae;Lee, Meung-Su;Kim, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.479-482
    • /
    • 1993
  • A fully balanced differential amplifier can achieve high-gain wide-bandwidth characteristics. And also, Offset PSRR, CMRR and Noise performance of that are excellent, but these merits can be achieved only when the architecture holds fully balanced. Commonly, the fully balanced differential amplifier has a common mode feedback(CMFB) circuit in order to maintain the balance. This paper presents improved characteristics of the CMFB circuit and designs the wide-bandwidth CMOS Op-amp. The unity gain bandwidth of this Op-amp is 50MHz with the load capacitor 2pF, and the value of phase margin is $85^{\circ}$.

  • PDF

Design of a New Op-Amp for Driving Large-Size LCD Panels (대면적 LCD 패널 구동을 위한 새로운 Op-Amp설계)

  • 이동욱;권오경
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.133-136
    • /
    • 2000
  • A new Op-Amp output buffer is presented for driving large-size LCD panels. The proposed Op-Amp is designed by combining a common source and a common drain amplifier to have a high slew rate and to minimize the quiescent current. The proposed circuits are simulated in a high-voltage 0.6${\mu}{\textrm}{m}$ CMOS process, dissipates only 20${\mu}{\textrm}{m}$ static current, and have 83dB open-loop DC gain and 60$^{\circ}$phase margin.

  • PDF