• Title/Summary/Keyword: AMOLED 디스플레이

Search Result 186, Processing Time 0.026 seconds

Full-Color AMOLED with RGBW Pixel Pattern

  • Amold, A.D.;Hatwar, T.K.;Hettel, M.V.;Kane, P.J.;Miller, M.E.;Murdoch, M.J.;Spindler, J.P.;Slyke, S.A. Van;Mameno, K.;Nishikawa, R.;Omura, T.;Matsumoto, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.808-811
    • /
    • 2004
  • A full-color AMOLED display with an RGBW color filter pattern has been fabricated. Displays with this format require about $^1/_2$ the power of analogous RGB displays. RGBW and RGB 2.16inch diagonal displays with average power consumptions of 180 mW and 340 mW, respectively, are demonstrated for a set of standard digital still camera images at a luminance of 100 cd/$m^2$. In both cases, a white-emitting AMOLED is used as the light source. The higher efficiency of the RGBW format results because a large fraction of a typical image can be represented as white, and the white sub-pixel in an RGBW AMOLED display is highly efficient because of the absence of any color filter. RGBW and RGB AMOLED displays have the same color gamut and, aside from the power consumption difference, are indistinguishable.

  • PDF

Color and Luminance Compensation for Large AMOLEDs

  • Park, Kyong-Tae;Arkipov, Alexander;Lee, Baek-Woon;Kim, Seon-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.850-853
    • /
    • 2009
  • Many well-known pixel compensation circuits have been applied to control TFT $V_{th}$ variations on small size AMOLED panels. For large (>30-inch) AMOLEDs, luminance and color uniformity are affected by TFT variations, but also by ELVDD IR drop and cavity non-uniformity which are not easily compensated by in-pixel circuits. AMOLED panels may also suffer from manufacturing-induced mura. An external compensation method based on optical measurements is proposed and applied to large AMOLED panels. It improves luminance uniformity by up to 95% at 200nits and color uniformity by up to 99% (${\Delta}$u'v' <0.004) on large AMOLED panels, and provides-increased margin against processinduced mura.

  • PDF

A Study on the Discrimination Criteria of AMOLED-related Patents, a National Core Technology of Display Industry (디스플레이 분야 국가핵심기술인 AMOLED 관련 특허의 판별 기준 연구)

  • Se Hee Pak;Hang Bae Chang
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.105-121
    • /
    • 2024
  • Korea operates a national core technology system to protect important technologies at the national level. In the administrative procedures of the nation's core technology, the deliberation process conducted by qualitative evaluation by related industry experts is important. As the need for timely and appropriate technology protection increased, the need to shorten the time required for administrative procedures related to the designation and removal of national core technologies was raised. Therefore, this study studied the criteria for identifying patents related to national core technologies. For AMOLED, a national core technology in the display field, LDA topic modeling was applied to related news and papers to derive important technology and its trends, and mapped to AMOLED advanced technology processes under Article 5 of the Industrial Development Act to prepare criteria for discrimination. Since then, objective verification has been conducted through AMOLED national core technology patents already known. Through this study, patents related to AMOLED national core technologies can be identified, which can shorten the time for related administrative procedures.

a-Si Process-based Advanced SPC TFT for AMOLED Application

  • Lee, Seok-Woo;Lee, Sang-Jin;Ahn, Tae-Joon;Park, Soo-Jeong;Kang, Su-Hyuk;Jung, Sang-Hoon;Lee, Hong-Koo;Kim, Sung-Ki;Park, Yong-In;Kim, Chang-Dong;Yang, Myoung-Su;Kang, In-Byeong;Hwang, Yong-Kee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.961-963
    • /
    • 2009
  • a-Si process-based advanced-SPC (a-SPC) TFT has been developed and verified by manufacturing an AMOLED panel having improved cost competitiveness by using the existing a-Si infrastructure. The a-SPC TFT had superior device reliability and current drivability to a-Si TFT to meet the requirements of AMOLED backplane.

  • PDF

Analysis of Low Power Consumption AMOLED Displays on Flexible Stainless Steel Substrates

  • Hack, Mike;Hewitt, Richard;Ma, Ray;Brown, Julie J.;Choi, Jae-Won;Cheon, Jun-Hyuk;Kim, Se-Hwan;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.58-61
    • /
    • 2007
  • We present simulations and results to demonstrate the viability of stainless steel foil as a substrate for low power consumption, flexible AMOLED displays. Using organic planarization layers, we achieve very smooth surface properties, resulting in excellent TFT performance, that can be repetitively flexed without significantly affecting device performance. The use of phosphorescent OLEDs enables the design of low power consumption 40" AMOLED displays.

  • PDF