• 제목/요약/키워드: AMB

검색결과 97건 처리시간 0.022초

State of Knowledge of Apple Marssonina Blotch (AMB) Disease among Gunwi Farmers

  • Posadas, Brianna B.;Lee, Won Suk;Galindo-Gonzalez, Sebastian;Hong, Youngki;Kim, Sangcheol
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.255-262
    • /
    • 2016
  • Purpose: Fuji apples are one of the top selling exports for South Korea bringing in over $233.4 million in 2013. However, during the last few decades, about half of the Fuji apple orchards have been infected by Apple Marssonina Blotch disease (AMB), a fungal disease caused by Diplocarpon mali., which takes about 40 days to exhibit obvious visible symptoms. Infected leaves turn yellow and begin growing brown lesions. AMB promotes early defoliation and reduces the quality and quantity of apples an infected tree can produce. Currently, there is no prediction model for AMB on the market. Methods: The Precision Agriculture Laboratory (PAL) at the University of Florida (UF) has been working with the National Academy of Agricultural Science, Rural Development Administration, South Korea to investigate the use of hyperspectral data in creating an early detection method for AMB. The RDA has been researching hyperspectral techniques for disease detection at their Apple Research Station in Gunwi since 2012 and disseminates its findings to the local farmers. These farmers were surveyed to assess the state of knowledge of AMB in the area. Out of a population of about 750 growers, 111 surveys were completed (confidence interval of +/- 8.59%, confidence level of 95%, p-value of 0.05). Results: The survey revealed 32% of the farmers did not know what AMB was, but 45% of farmers have had their orchards infected by AMB. Twenty-five percent could not distinguish AMB from other symptoms. Overwhelmingly, 80% of farmers strongly believed an early detection method for AMB was necessary. Conclusions: The results of the survey will help to evaluate the outreach programs of the RDA so they can more effectively educate farmers on the identifying, treating, and mediating AMB.

System Modeling and Robust Control of an AMB Spindle : Part II A Robust Controller Design and its Implementation

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1855-1866
    • /
    • 2003
  • This paper discusses an entire procedure for a robust controller design and its implementation of an AMB (active magnetic bearing) spindle, which is part II of the papers presenting details of system modeling and robust control of an AMB spindle. Since there are various uncertainties in an AMB system and reliability is the most important factor for applications, robust control naturally gains attentions in this field. However, tight evaluations of various uncertainties based on experimental data and appropriate performance weightings for an AMB spindle are still ongoing research topics. In addition, there are few publications on experimental justification of a designed robust controller. In this paper, uncertainties for the AMB spindle are classified and described based on the measurement and identification results of part I, and an appropriate performance weighting scheme for the AMB spindle is developed. Then, a robust control is designed through the mixed ${\mu}$ synthesis based on the validated accurate nominal model of part I, and the robust controller is reduced considering its closed loop performance. The reduced robust controller is implemented and confirmed with measurements of closed-loop responses. The AMB spindle is operated up to 57,600 rpm and performance of the designed controller is compared with a benchmark PID controller through experiments. Experiments show that the robust controller offers higher stiffness and more efficient control of rigid modes than the benchmark PID controller.

하이브리드 AMB를 포함한 초전도 플라이휠 에너지 저장장치의 실험평가 (Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing)

  • 이정필;김한근;한상철
    • Progress in Superconductivity
    • /
    • 제13권3호
    • /
    • pp.195-202
    • /
    • 2012
  • In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

자성 박테리아 Magnetospirillum sp. AMB-1 의 1 차원적, 2차원적 운동성을 이용한 새로운 수질 독성 측정 방법

  • 성시명;박태현
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.500-503
    • /
    • 2000
  • 미생물을 이용한 새로운 독성 측정 방법으로서, 본 연구에서는 자성 박테리아 Magnetospirillum sp. AMB-1 세포들의 유영 속력 측정을 통한 독성 측정의 가능성과, 발광 박테리아를 이용한 기존의 $Microtox^{circledR}$ 시스템에 견줄 수 있는 새로운 독성 측정 방법이라는 사실을 확인하였다. 또한, AMB-1 세포들의 주기성 관찰을 통해 또 다른 독성 측정 방법의 가능성을 확인하였다.

  • PDF

이동 차량 탑재용 전자기 베어링 시스템 설계 (Design of Active Magnetic Bearing System for Moving Vehicles)

  • 김하용;심현식;이종원;강태하
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.364-370
    • /
    • 2005
  • The active magnetic bearing (AMB) systems mounted in moving vehicles are exposed to the disturbances due to the base motion, often leading to malfunction or damage as well as inaccurate positioning of the systems. Thus, in the controller design of such AMB systems, robustness to base disturbances becomes an essential requirement. In this study, effective control schemes are proposed for the homo-polar AMB system, which uses permanent magnets for generation of bias magnetic flux, when it is subject to base motion, and its control performance is experimentally evaluated. The base motion of AMB system is modeled as the dynamic disturbances in the gravity and base excitation forces. To effectively compensate for the disturbances, the angle feed-forward controller based on the inverse dynamic model and the acceleration feed-forward controller based on the normalized filtered-X LMS algorithm are proposed. The performance test of the prototype AMB system is carried out, when the system is mounted on rate table. The experimental results show that the performance of the proposed controllers for the AMB system is satisfactory in compensating for the disturbances due to the base motion.

변형된 PDC 방식을 이용한 능동형 자기 베어링 시스템의 퍼지제어 (Fuzzy Control of Active Magnetic Bearing System Using a Modified PDC Algorithm)

  • 이상민
    • 한국지능시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.598-604
    • /
    • 1999
  • 본 논문에서는 능동형자기베어링(Active Magnetic Bearing AMB)시스템의 제어를 위한 새로운 퍼지제어 알고리즘을 제안한다. 이 방법은 AMB 시스템의 비선형 특성을 효과적으로 다루기 위하여 Joh등[4,5]이 제안한 LMI에 근거한 PDC 알고리즘과 퍼지 싱글톤을 사용하는 Mamdani형의 퍼지제어기를 복합한다. 이들은 각각 fine mode control과 coarse mode control이라고 구분하였다. coarse mode control은 회전축의 위치에러가 큰 경우 빠른 중심복귀 응답특성을 보이며 fine mode control은 회전축의 위치에러가 작을 때 요구되는 과도응답특성을 제공한다. 본 논에서 제안된 방법은 그성능을 입증하기 위하여 AMB 시스템의 제어에 적용되었으며 선형제어기와 일반적인 PDC 알고리즘으로 제어된 결과와의 비교를 통해 제안된 방법의 우수성을 보인다.

  • PDF

이동 차량 탑재용 전자기 베어링 시스템 설계 (Design of active magnetic bearing system for moving vehicles)

  • 김하용;심현식;이종원;강태하
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.486-489
    • /
    • 2004
  • The active magnetic bearing (AMB) systems mounted in moving vehicles are exposed to the disturbances due to the base motion, often leading to malfunction or damage as well as inaccurate positioning of the systems. Thus, in the controller design of such AMB systems, robustness to base disturbances becomes an essential requirement. In this study, effective control schemes are proposed for the homo-polar AMB system, which uses permanent magnets for generation of bias magnetic flux, when it is subject to base motion, and its control performance is experimentally evaluated. The base motion of AMB system is modeled as the dynamic disturbances in the gravity and base excitation forces. To effectively compensate for the disturbances, the angle feed-forward controller based on the inverse dynamic model and the acceleration feed-forward controller based on the normalized filtered-X LMS algorithm are proposed. The performance test of the prototype AMB system is carried out, when the system is mounted on rate table. The experimental results show that the performance of the proposed controllers for the AMB system is satisfactory in compensating for the disturbances due to the base motion.

  • PDF

Polytopic Quasi-LPV 모델 기반 능동자기베어링의 비선형제어기 설계 (Nonlinear Controller Design of Active Magnetic Bearing Systems Based on Polytopic Quasi-LPV Models)

  • 이동환;박진배;정현석;주영훈
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.797-802
    • /
    • 2010
  • In this paper, a systematic procedure to design a nonlinear controller for nonlinear active magnetic bearing (AMB) systems is presented. To do this, we effectively convert the AMB system into a polytopic quasi-linear parameter varying (LPV) system, which is a representation of nonlinear state-space models and is described by the convex combination of a set of precisely known vertices. Unlike the existing quasi-LPV systems, the nonlinear weighting functions, which construct the polytopic quasi-LPV model of the AMB system by connecting the vertices, include not only state variables but also the input ones. This allows us to treat the input nonlinearity effectively. By means of the derived polytopic quasi-LPV model and linear matrix inequality (LMI) conditions, nonlinear controller that stabilizes the AMB system is obtained. The effectiveness of the proposed controller design methodology is finally demonstrated through numerical simulations.

Model Validation and Controller Design for Vibration Suppression of Flexible Rotor Using AMB

  • Soo Jeon;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1583-1593
    • /
    • 2002
  • This paper discusses the model validation and vibration suppression of an AMB flexible rotor via additional LQG controller. The main difficulty in the vibration suppression of the flexible rotor using AMB is to realize a controller that can minimize resonance without injuring the stabilized rigid modes. In order to solve this problem, simple scheme for system modeling and controller design are developed. Firstly, the AMB flexible rotor is stabilized with a PID controller, which leads to a new stable rotor-bearing system. Then, authors propose the model validation procedure using measured open-loop frequency responses to obtain an accurate model of the AMB flexible rotor system. After that, LQG controller with modal weighting is designed to suppress resonances of the stable rotor-bearing system. Due to the poor controllability and observability of flexible modes compared to rigid ones, balancing of two Gramians is prerequisite for the fair LQG controller design. Simulation with step disturbance and experimental results of unbalance response up to 10,000 rpm verified the effectiveness of the proposed scheme.

System Modeling and Robust Control of an AMB Spindle : Part I Modeling and Validation for Robust Control

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1844-1854
    • /
    • 2003
  • This paper discusses details of modeling and robust control of an AMB (active magnetic bearing) spindle, and part I presents a modeling and validation process of the AMB spindle. There are many components in AMB spindle : electromagnetic actuator, sensor, rotor, power amplifier and digital controller. If each component is carefully modeled and evaluated, the components have tight structured uncertainty bounds and achievable performance of the system increases. However, since some unknown dynamics may exist and the augmented plant could show some discrepancy with the real plant, the validation of the augmented plant is needed through measuring overall frequency responses of the actual plant. In addition, it is necessary to combine several components and identify them with a reduced order model. First, all components of the AMB spindle are carefully modeled and identified based on experimental data, which also render valuable information in quantifying structured uncertainties. Since sensors, power amplifiers and discretization dynamics can be considered as time delay components, such dynamics are combined and identified with a reduced order. Then, frequency responses of the open-loop plant are measured through closed-loop experiments to validate the augmented plant. The whole modeling process gives an accurate nominal model of a low order for the robust control design.