• Title/Summary/Keyword: ALTITUDINAL GRADIENT

Search Result 23, Processing Time 0.022 seconds

Tree Species Assemblages, Stand Structure, and Regeneration in an Old-Growth Mixed Conifer Forest in Kawang, Western Bhutan

  • Attila Biro;Bhagat Suberi;Dhan Bahadur Gurung;Ferenc Horvath
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.3
    • /
    • pp.210-226
    • /
    • 2024
  • Old-growth mixed-conifer forests in Bhutan are characterized by remarkable tree species compositional heterogeneity. However, our knowledge of tree species assemblages and their structural attributes in these forests has been limited. Therefore, forest classification has been reliant on a single dominant species. This study aimed to distinguish tree species assemblages in an old-growth mixed conifer forest in Western Bhutan and to describe their natural compositional and stand structural characteristics. Furthermore, the regeneration status of species was investigated and the quantity and quality of accumulated coarse woody debris were assessed. Ninety simple random sampling plots were surveyed in the study site between 3,000 and 3,600 meters above sea level. Tree, standing deadwood, regeneration, and coarse woody debris data were collected. Seven tree species assemblages were distinguished by Hierarchical Cluster Analysis and Indicator Species Analysis, representing five previously undescribed tree species associations with unique set of consistent species. Principal Component Analysis revealed two transitional pathways of species dominance along an altitudinal gradient, highly determined by relative topographic position. The level of stand stratification varied within a very wide range, corresponding to physiognomic composition. Rotated-sigmoid and negative exponential diameter distributions were formed by overstorey species with modal, and understorey species with negative exponential distribution. Overstorey dominant species showed extreme nurse log dependence during regeneration, which supports the formation of their modal distribution by an early natural selection process. This allows the coexistence of overstorey and understorey dominant species, increasing the sensitivity of these primary ecosystems to forest management.

Distribution Pattern of Vascular Plant Species along an Elevational Gradient in the Samga Area of Sobaeksan National Park (소백산국립공원 삼가지구 관속식물의 고도별 분포패턴)

  • Park, Hwan Joon;Ahn, Ji Hong;Seo, In soon;Lee, Sae Rom;Lee, Byoung Yoon;Kim, Jung Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.1-22
    • /
    • 2020
  • In order to evaluate the vertical distribution and distributional pattern of vascular plants in the Samga district of Sobaeksan National Park, vascular plants were surveyed along a hiking trail from the Samga Tour Support Center to the top of a mountain. The elevation range was divided into 11 sections with 100 m intervals from 400 m to 1439 m above sea level.A total of 375 taxa were listed, comprising 92 families, 235 genera, 332 species, 3 subspecies, 37 varieties, and 3 forms. The pattern of species richness along the elevational gradient showed a reverse hump-shaped trend. The species distribution pattern was positively correlated with the soil exchangeable cations Ca2+ and Mg2+, soil pH, available phosphate, and the warmth index. Furthermore, slope, soil moisture content, and soil exchangeable cations were significantly correlated with species distribution. DCA grouped herb species into two groups. Stands of each section were sequentially arranged from 400 m to 1500 m along an altitudinal gradient. Soil moisture content, soil pH, soil K2+ and Na2+, available phosphate, and slope were significantly correlated with stand distribution. This study provides important data that could be useful for conservation and the sustainable use of biodiversity in the study area. In order to understand the ecological and environmental characteristics and distribution of plant species, it will be necessary to continuously develop relative studies with continuous monitoring.

Vegetation Type Classification and Endemic-Rare Plants Investigation in Forest Vegetation Area Distributed by Vulnerable Species to Climate Change, Mt. Jiri (지리산 기후변화 취약수종 분포지의 산림식생 유형 및 희귀-특산식물 분포 특성)

  • Kim, Ji Dong;Park, Go Eun;Lim, Jong-Hwan;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.113-125
    • /
    • 2018
  • Subalpine zone is geographically vulnerable to climate change. Forest vegetation in this zone is one of the important basic indicator to observe the influence of climate change. This study was conducting phytosociological community classification and endemic-rare plants investigation based on vulnerable species to climate change at the subalpine zone, Mt. Jiri. Vegetation data were collected by 37 quadrate plots from March to October, 2015. In order to understand the species composition of plant sociological vegetation types and the ecological impacts of species, we analyzed the layer structure of vegetation type using important values. Vegetation type was classified into eight species groups and five vegetation units. The vegetation types can be suggested as an indicator on the change of species composition according to the future climate change. There were 9 taxa endemic plants and 17 taxa rare plants designated by KFS(Korea Forest Service) where 41.2% of them were the northern plant. Endemic-rare plants increased as the altitude of vegetation unit increase. Importance value analysis showed that the mean importance value of Abies koreana was highest of all vegetation units. Based on analysis of each layer, all units except vegetation unit 1 were considered to be in competition with the species such as Quercus mongolica and Acer pseudosieboldianum. The results of this study can be a basic data to understand the new patterns caused by climate change. In addition, it can be a basic indicator of long-term monitoring through vegetation science approach.