• Title/Summary/Keyword: ALOS-2 PALSAR-2

Search Result 25, Processing Time 0.026 seconds

Comparison of Observation Performance of Urban Displacement Using ALOS-1 L-band PALSAR and COSMO-SkyMed X-band SAR Time Series Images (ALOS-1 L-band PALSAR와 COSMO-SkyMed X-band SAR 시계열 영상을 이용한 도심지 변위관측 성능 비교 분석)

  • Choi, Jung-Hyun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.283-293
    • /
    • 2018
  • We applied PSInSAR to two SAR satellite (ALOS-1 and COSMO-SkyMed) images and analyzed the difference in displacement observation performance according to sensor characteristics. The building layer was extracted from the digital topographic map, and the PS extracted from the SAR image was classified into two groups(building structure and ground surface) for density analysis. The density of PS extracted from the research area was $0.023point/m^2$ for ALOS-1 PALSAR and $0.1point/m^2$ for COSMO-SkyMed, more than 4 times PS was extracted compared to ALOS-1. In addition, not only the PS density in the building, but also the density in the ground were greatly increased. The average displacement velocity of ALOS-1 PALSAR is within ${\pm}1cm/yr$, while for COSMO-SkyMed it is within ${\pm}0.3cm/yr$. Although it is difficult to make quantitative comparisons because it does not use the data for the same period, it can be said that the accuracy of X-band SAR system is very high compared to the L-band. In consideration of PS observation density and observation accuracy of displacement, X-band SAR data is very effective in research where it is important to acquire useful signals from the ground surface, such as ground subsidence and sinkhole.

Evaluation on Spectral Analysis in ALOS-2 PALSAR-2 Stripmap-ScanSAR Interferometry (ALOS-2 Stripmap-ScanSAR 위상간섭기법에서의 스펙트럼 분석 평가)

  • Park, Seo-Woo;Jung, Seong-Woo;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.351-363
    • /
    • 2020
  • It is well known that alluvial sediment located in coastal region has been easily affected by geohazard like ground subsidence, marine or meteorological disasters which threaten invaluable lives and properties. The subsidence is a sinking of the ground due to underground material movement that mostly related to soil compaction by water extraction. Thus, continuous monitoring is essential to protect possible damage from the ground subsidence in the coastal region. Radar interferometric application has been widely used to estimate surface displacement from phase information of synthetic aperture radar (SAR). Thanks to advanced SAR technique like the Small BAseline Subset (SBAS), a time-series of surface displacement could be successfully calculated with a large amount of SAR observations (>20). Because the ALOS-2 PALSAR-2 L-band observations maintain higher coherence compared with other shorter wavelength like X- or C-band, it has been regarded as one of the best resources for Earth science. However, the number of ALOS-2 PALSAR-2 observations might be not enough for the SBAS application due to its global monitoring observation scenario. Unfortunately, the number of the ALOS-2 PALSAR-2 Stripmap images in area of our interest, Busan which located in the Southeastern Korea, is only 11 which is insufficient to apply the SBAS time-series analysis. Although it is common that the radar interferometry utilizes multiple SAR images collected from same acquisition mode, it has been reported that the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application could be possible under specific acquisition mode. In case that we can apply the Stripmap-ScanSAR interferometry with the other 18 ScanSAR observations over Busan, an enhanced time-series surface displacement with better temporal resolution could be estimated. In this study, we evaluated feasibility of the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application using Gamma software considering differences of chirp bandwidth and pulse repetition frequency (PRF) between two acquisition modes. In addition, we analyzed the interferograms with respect to spectral shift of radar carrier frequency and common band filtering. Even though it shows similar level of coherence regardless of spectral shift in the radar carrier frequency, we found periodic spectral noises in azimuth direction and significant degradation of coherence in azimuth direction after common band filtering. Therefore, the characteristics of spectral bandwidth in the range and azimuth direction should be considered cautiously for the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometry.

JAXA'S EARTH OBSERVING PROGRAM

  • Shimoda, Haruhisa
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.7-10
    • /
    • 2006
  • Four programs, i.e. TRMM, ADEOS2, ASTER, and ALOS are going on in Japanese Earth Observation programs. TRMM and ASTER are operating well, and TRMM operation will be continued to 2009. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on $24^{th}$ Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2008-2012 timeframe. They are GOSAT (Greenhouse Gas Observation Satellite), GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GOSAT will carry 2 instruments, i.e. a green house gas sensor and a cloud/aerosol imager. The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 ${\mu}m$ region with 0.2 to 0.5 $cm^{-1}$ resolution. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). Discussions on future Earth Observation programs have been started including discussions on ALOS F/O.

  • PDF

Change Detection of the Tonle Sap Floodplain, Cambodia, using ALOS PALSAR Data

  • Trung, Nguyen Van;Choi, Jung-Hyun;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • Water level of the Tonle Sap is largely influenced by the Mekong River. During the wet season, the lacustrine landform and vegetated areas are covered with water. Change detection in this area provides information required for human activities and sustainable development around the Tonle Sap. In order to detect the changes in the Tonle Sap floodplain, fifteen ALOS-PALSAR L-band data acquired from January 2007 to January 2009 and examined in this study. Since L-band is able to penetrate into vegetation cover, it enables us to study the changes according to water level of floodplain developed in the rainforest. Four types of images were constructed and studied include 1) ratio images, 2) correlation coefficient images, 3) texture feature ratio images and 4) multi-color composite images. Change images (in each 46 day interval) extracted from the ratio images, coherence images and texture feature ratio images were formed for detecting land cover change. Two RGB images are also obtained by compositing three images acquired in the early, in the middle and at the end of the rainy season in 2007 and 2008. Combination of the methods results that the change images present the relationship between vegetation and water level, leaf fall forest as well as cultivation and harvest crop.

Analysis of Ground Subsidence using ALOS PALSAR (2006~2010) in Taebaek, Kangwon (ALOS PALSAR(2006년~2010년) 위성영상을 이용한 강원도 태백시 지반침하 관측 및 분석)

  • Cho, Min-Ji;Kim, Sang-Wan
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.503-512
    • /
    • 2012
  • We performed DInSAR (Differential Interferometric SAR) and SBAS (Small BAseline Subset) analysis using spaceborne SAR (Synthetic Aperture Radar) in order to detect a surface subsidence in Taebaek area, Kangwon, which are suitable to the monitoring of broad and inaccessible areas. During the period from October 2006 to June 2010, we acquired twenty-three ALOS PALSAR data sets (path/frame=425/730) for this study. The ninety-six differential interferograms with a perpendicular baseline less than 1100 m were constructed by ROI_PAC, then the mean velocity map of surface displacement was derived from SBAS analysis. As a result, it was confirmed that the ground displacement occurred about 4 cm/yr at Seokgong-Jangseong and Kyungdong mines and 2 cm/yr at Saehan-Eoryong-Jungdong and Hwangji mines in Taebaek area, Kangwon. It seems that the subsidence in study area is closely related to mining activities because the most of subsiding areas are well matched with mining areas. The subsidence at Kyungdong mine shows continuous and fast velocity in about $2{\times}2$ km area. Therefore the further analysis and the effort to prevent disaster are required in this area.

Evaluation of Space-based Wetland InSAR Observations with ALOS-2 ScanSAR Mode (습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.447-460
    • /
    • 2022
  • It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.

Mapping Precise Two-dimensional Surface Deformation on Kilauea Volcano, Hawaii using ALOS2 PALSAR2 Spotlight SAR Interferometry (ALOS-2 PALSAR-2 Spotlight 영상의 위성레이더 간섭기법을 활용한 킬라우에아 화산의 정밀 2차원 지표변위 매핑)

  • Hong, Seong-Jae;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1235-1249
    • /
    • 2019
  • Kilauea Volcano is one of the most active volcano in the world. In this study, we used the ALOS-2 PALSAR-2 satellite imagery to measure the surface deformation occurring near the summit of the Kilauea volcano from 2015 to 2017. In order to measure two-dimensional surface deformation, interferometric synthetic aperture radar (InSAR) and multiple aperture SAR interferometry (MAI) methods were performed using two interferometric pairs. To improve the precision of 2D measurement, we compared root-mean-squared deviation (RMSD) of the difference of measurement value as we change the effective antenna length and normalized squint value, which are factors that can affect the measurement performance of the MAI method. Through the compare, the values of the factors, which can measure deformation most precisely, were selected. After select optimal values of the factors, the RMSD values of the difference of the MAI measurement were decreased from 4.07 cm to 2.05 cm. In each interferograms, the maximum deformation in line-of-sight direction is -28.6 cm and -27.3 cm, respectively, and the maximum deformation in the along-track direction is 20.2 cm and 20.8 cm, in the opposite direction is -24.9 cm and -24.3 cm, respectively. After stacking the two interferograms, two-dimensional surface deformation mapping was performed, and a maximum surface deformation of approximately 30.4 cm was measured in the northwest direction. In addition, large deformation of more than 20 cm were measured in all directions. The measurement results show that the risk of eruption activity is increasing in Kilauea Volcano. The measurements of the surface deformation of Kilauea volcano from 2015 to 2017 are expected to be helpful for the study of the eruption activity of Kilauea volcano in the future.

Polarimetric Scattering of Sea Ice and Snow Using L-band Quad-polarized PALSAR Data in Kongsfjorden, Svalbard (북극 스발바드 콩스피오르덴 해역에서 L 밴드 PALSAR 데이터를 이용한 눈과 부빙에 의한 다중편파 산란특성 해석)

  • Jung, Jung-Soo;Yang, Chan-Su;Ouchi, Kazuo;Nakamura, Kuzaki
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • This study describes measurements of fast ice recorded on May 23, 2009, in Kongsfjorden (translated as 'Kongs Fjord'), an inlet on the west coast of Spitsbergen in the Svalbard Archipelago. Seasonal fast ice is an important feature for Svalbard fjords, both in relation to their physical environment and also the local ecosystem, since it grows seaward from the coast and remains in place throughout the winter. Ice thickness, snow, ice properties, and wind speed were measured, while SAR (Synthetic Aperture Radar) data was observed simultaneously observed two times from ALOS-PALSAR (L-band). Measured ice thickness was about 25-35 cm while the thickness of ice floe broken from fast ice was measured as 10-15 cm. Average salinity was 1.9-2.0 ppt during the melting period. Polarimetric data was used to extract H/A/alpha-angle parameters of fast ice, ice floe, snow and glacier, which was classified into 18 classes based on these parameters. It was established that the area of fast ice represents surface scattering which indicates low and medium entropy surface scatters such as Bragg and random surfaces, while fast ice covered with snow belongs to a zone of low entropy surface scattering similar to snow-covered land surfaces. The results of this study will contribute to various interpretations of interrelationships between H/A/alpha parameters and the wave scattering Phenomenon of sea ice.

Time Series Analysis with ALOS PALSAR images and GPS data: Detection of Ground Subsidence in the Mokpo Area using the SBAS Algorithm (ALOS PALSAR 영상과 GPS를 이용한 시계열 분석: SBAS 알고리즘을 적용한 목포시 일원의 지반침하 연구)

  • Kim, So-Yeon;Bae, Tae-Suk;Kim, Sang-Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.375-384
    • /
    • 2013
  • Most of regions within the city of Mokpo, located on the southwest coast of the Korean Peninsula, are subjected to significant subsidence because about 70% of the city is land reclaimed from the sea (Kim et al., 2005). In this study, we aimed to estimate the rate of subsidence over Mokpo by using PALSAR L-band dataset from 2006 to 2010. Time series analysis was performed as well using GPS surveying data from 2010 to 2012. Results from these two independent datasets are then compared and analyzed over the common period of time. GPS data processing provides the results of seasonal variation on the surface, that is, via repeatedly rising and falling in association with the periodic cycle. Therefore, a time series analysis was performed to calculate the rate of ground subsidence. The deformation rates calculated for the same point are 3.89cm/yr and 2.65cm/yr from the GPS data and SAR data, respectively. SAR and GPS data processing results show a very similar pattern in terms of magnitude of annual subsidence. Thus, if the two datasets are integrated together, new modeling on ground subsidence is feasible. Lastly, subsidence was detected in a landfill area in the city of Mokpo, which has been continuously occurring through 2012.

Deformation monitoring of Daejeon City using ALOS-1 PALSAR - Comparing the results by PSInSAR and SqueeSAR - (ALOS-1 PALSAR 영상을 이용한 대전지역 변위 관측 - PSInSAR와 SqueeSAR 분석 결과 비교 -)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.567-577
    • /
    • 2016
  • SqueeSAR is a new technique to combine Persistent Scatterer (PS) and Distributed Scatterer (DS) for deformation monitoring. Although many PSs are available in urban areas, SqueeSAR analysis can be beneficial to increase the PS density in not only natural targets but also smooth surfaces in urban environment. The height of each targets is generally required to remove topographic phase in interferometric SAR processing. The result of PSInSAR analysis to use PS only is not affected by DEM resolution because the height error of initial input DEM at each PSs is precisely compensated in PS processing chain. On the contrary, SqueeSAR can be affected by DEM resolution and precision since it includes spatial average filtering for DS targets to increase a signal-to-noise ratio (SNR). In this study we observe the effect of DEM resolution on deformation measurement by PSInSAR and SqueeSAR. With ALOS-1 PALSAR L-band data, acquired over Daejeon city, Korea, two different DEM data are used in InSAR processing for comparison: 1 m LIDAR DEM and SRTM 1-arc (~30 m) DEM. As expected the results of PSInSAR analysis show almost same results independently of the kind of DEM, while the results of SqueeSAR analysis show the improvement in quality of the time-series in case of 1-m LIDAR DSM. The density of InSAR measurement points was also improved about five times more than the PSInSAR analysis.