Journal of the Korea Society of Computer and Information
/
v.28
no.12
/
pp.147-153
/
2023
As it spreads to all industries of artificial intelligence technology, AIaaS equipped with artificial intelligence services is emerging. In particular, non-IT companies are suffering from the absence of software experts, difficulties in training big data models, and difficulties in collecting and analyzing various types of data. AIaaS makes it easier and more economical for users to build a system by providing various IT resources necessary for artificial intelligence software development as well as functions necessary for artificial intelligence software in the form of a service. Therefore, the supply and demand for such cloud-based AIaaS services will increase rapidly. However, the quality of services provided by AIaaS becomes an important factor in what is required as the supply and demand for AIaaS increases. However, research on a comprehensive and practical quality evaluation metric to measure this is currently insufficient. Therefore, in this paper, we develop and propose a usability, replacement, scalability, and publicity metric, which are the four metrics necessary for measuring reusability, based on implementation, convenience, efficiency, and accessibility, which are characteristics of AIaaS, for reusability evaluation among the service quality measurement factors of AIaaS. The proposed metrics can be used as a tool to predict how much services provided by AIaaS can be reused for potential users in the future.
The Transactions of the Korea Information Processing Society
/
v.6
no.11S
/
pp.3410-3419
/
1999
Autonomous Intrusion Analysis Agent(AIAA) is Incident Response Team staff's tool that scans, analyses, reports and alerts the traces of intrusion based on system logs and intruder's backdoors inside compromised system by IR staff after security incident is reported to the IR team. AIAA is intelligent to recognize to check out who is intruder from all the user accounts and to report the suspected candidates to the master control system in IR team. IR staff who controls AIAA with master system can pick up an intruder from the candidates reported by AIAA agent and review all related summary reports and details including source host's mane, finger information, all illegal behavior and so on. AIAA is moved to compromised system by the staff to investigate the signature of intrusion along the trace of victim hosts and it is also operated in secret mode to detect the further intrusion. AIAA is alive in all victim systems until the incident is closed and IR staff can control AIAA operation and dialogue with AIAA agent in Web interface.
Due to the rapid development and dissemination of 5G communication and IoT technologies, there are increasing demands for big data analysis techniques and service systems. In particular, explosively growing demands on AI technology adoption are also causing high competitions to take advantages of machine/deep-learning models to extract novel values from enormously collected data. In order to adopt AI technology to various research and application domains, it is necessary to prepare high-performance GPU-equipped systems and perform complicated settings to utilze deep learning models. To relieve the efforts and lower the barrier to utilize AI techniques, AIaaS(AI as a service) platform is attracting a great deal of attention as a promising on-line service, where the complexity of preparation and operation can be hidden behind the cloud side and service developers only need to utilize the high-level AI services easily. In this paper, we propose an AIaaS system which can support the creation of AI services based on Docker and OpenFaaS from the registration of models to the on-line operation. We also describe a case study to show how AI services can be easily generated by the proposed system.
International Journal of Aeronautical and Space Sciences
/
v.13
no.3
/
pp.307-316
/
2012
Numerical simulations of 3D aircraft configurations are performed in order to understand the effects of turbulence models on the prediction of aircraft's aerodynamic characteristics. An in-house CFD code that solves 3D RANS equations and two-equation turbulence model equations are used. The code applies Roe's approximated Riemann solver and an AF-ADI scheme. Van Leer's MUSCL extrapolation with van Albada's limiter is also adopted. Various versions of Menter's $k-{\omega}$ SST turbulence models as well as Coakley's $q-{\omega}$ model are incorporated into the CFD code. Menter's $k-{\omega}$ SST models include the standard model, the 2003 model, the model incorporating the vorticity source term, and the model containing controlled decay. Turbulent flows over a wing are simulated in order to validate the turbulence models contained in the CFD code. The results from these simulations are then compared with computational results from the $3^{rd}$ AIAA CFD Drag Prediction Workshop. Numerical simulations of the DLR-F6 wing-body and wing-body-nacelle-pylon configurations are conducted and compared with computational results of the $2^{nd}$ AIAA CFD Drag Prediction Workshop. Aerodynamic characteristics as well as flow features are scrutinized with respect to the turbulence models. The results obtained from each simulation incorporating Menter's $k-{\omega}$ SST turbulence model variations are compared with one another.
In this study, numerical simulations of transonic aircraft configurations are performed with various turbulence models and the effect of turbulence models on flow separation are examined. A three-dimensional RANS code and three turbulence models are used for the study. The turbulence models incorporated to the code include Menter's ${\kappa}-{\omega}$ model, Coakley's $q-{\omega}$, and Huang and Coakley's ${\kappa}-{\omega}$, model. Using the code, numerical simulations of DLR-F6 configurations obtained from AIAA CFD Drag Prediction Workshop are conducted. Flow separations on the wing-body juncture and the wing lower surface near pylon are observed. and flow features of the regions are compared with experimental data and other numerical results.
International Journal of Aeronautical and Space Sciences
/
v.12
no.3
/
pp.211-224
/
2011
This is a written version of an hour-long lecture delivered by the author on June 30, 2011, as Plasmadynamics and Lasers Award Lecture at the AIAA 2011 summer conference in Honolulu, Hawaii. The author proposes that two areas of planetary entry physics be pursued in the future: outer planet aero-capturing and study of aerodynamics of meteoroid entries, both for the purpose of advancing the understanding of the possible extraterrestrial seeding of building blocks of life. For outer planet aero-capturing, the author proposes to develop new shock tube facilities that will produce up to 30 km/s of shock speed without causing photo-ionization of the driven gas by the radiation from the hot driver gas. Regarding meteors, the author proposes to carry out laboratory testing of the Tunguska event and of the seeding of amino acid molecules using a ballistic range which shoots a snowball laden with amino acid molecules toward a water surface.
Artificial Intelligence (AI), especially in the domain of text-generative services, has witnessed a significant surge, with forecasts indicating the AI-as-a-Service (AIaaS) market reaching a valuation of $55.0 Billion by 2028. This research set out to explore the quality dimensions characterizing synthetic text media software, with a focus on four key players in the industry: ChatGPT, Writesonic, Jasper, and Anyword. Drawing from a comprehensive dataset of over 4,000 reviews sourced from a software evaluation platform, the study employed the Latent Dirichlet Allocation (LDA) topic modeling technique using the Gensim library. This process resulted the data into 11 distinct topics. Subsequent analysis involved comparing these topics against established AI service quality dimensions, specifically AICSQ and AISAQUAL. Notably, the reviews predominantly emphasized dimensions like availability and efficiency, while others, such as anthropomorphism, which have been underscored in prior literature, were absent. This observation is attributed to the inherent nature of the reviews of AI services examined, which lean more towards semantic understanding rather than direct user interaction. The study acknowledges inherent limitations, mainly potential biases stemming from the singular review source and the specific nature of the reviewer demographic. Possible future research includes gauging the real-world implications of these quality dimensions on user satisfaction and to discuss deeper into how individual dimensions might impact overall ratings.
Recently, safety issues in companies and public institutions are no longer a task that can be postponed, and when a major safety accident occurs, not only direct financial loss, but also indirect loss of social trust in the company and public institution is greatly increased. In particular, in the case of a fatal accident, the damage is even more serious. Accordingly, as companies and public institutions expand their investments in industrial safety education and prevention, open AI learning model creation technology that enables safety management services without being affected by user behavior in industrial sites where high-risk situations exist, edge terminals System development using inter-AI collaboration technology, cloud-edge terminal linkage technology, multi-modal risk situation determination technology, and AI model learning support technology is underway. In particular, with the development and spread of artificial intelligence technology, research to apply the technology to safety issues is becoming active. Therefore, in this paper, an open cloud platform design method that can support AI model learning for high-risk site safety management is presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.