• Title/Summary/Keyword: AISI 52100

Search Result 57, Processing Time 0.018 seconds

Effect of Heat Treatment Conditions on the Microstructure and Wear Behavior of Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 미세구조 및 마모거동에 미치는 후열처리 조건의 영향)

  • Kim, K.T.;Oh, M.S.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.121-126
    • /
    • 2007
  • This study aims at investigating the effect of heat treatment conditions on the dry sliding wear behavior of thermally sprayed Ni-based self-flux alloy coatings. Ni-based self-flux alloy powders were sprayed onto a carbon steel substrate and then heat-treated at 700, 800, 900 and $1000^{\circ}C$ for 30 minutes in a vacuum furnace. Dry sliding wear tests were performed using sliding speed of 0.4 m/s and applied load of 6 N. AISI 52100 ball(diameter 8 mm) was used as counterparts. Microstructure and wear behavior of both as-sprayed and heat-treated Ni-based self-flux alloy coatings were studied using a scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDX), electron probe micro-analysis(EPMA) and X-ray diffraction(XRD). It was revealed that microstructure and wear behavior of thermally sprayed Ni-based self-flux alloy coatings were much influenced by heat treatment conditions.

  • PDF

Tribological Behavior of Thin PMMA (Poly Methyl Methacrylate) Coating Layers (PMMA(Poly Methyl Methacrylate) 박막 코팅 층의 마찰 및 마멸 거동)

  • Kang S. H;Kim Y. S
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.716-722
    • /
    • 2004
  • Effects of sliding speed, applied load, and thickness of PMMA (Poly Methyl Methacrylate) coating layers on their dry sliding frictional and wear behavior were investigated. Sliding wear tests were carried out using a pin-on-disk wear tester. The PMMA layer was coated on Si wafer by a spin coating process with two different thicknesses, $1.5\mu\textrm{m}$ and $0.8\mu\textrm{m}$. AISI 52100 bearing steel balls were used as a counterpart of the PMMA coating during the wear. Normal applied load and sliding speed were varied. Wear mechanisms of the coatings were investigated by examining worn surfaces using an SEM. Friction coefficient of the coatings decreased with the increase of the applied load. Both adhesion and deformation of the coating determined the coefficient. The thicker PMMA layer with the thickness of $1.5mutextrm{m}$ showed lower friction coefficient than the thinner layer under most test conditions. Effects of sliding speed and applied load on the frictional behavior were varied depending on the thickness of the coating layer.

Wear-characteristics variation of Fe-C-N alloy with changing content of carbon and nitrogen (탄소와 질소 함량에 따른 탄질소 복합첨가강의 내마멸 특성 변화)

  • Park, J.K.;Yi, S.K.;Kim, S.J.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.385-388
    • /
    • 2009
  • Dry-sliding-wear behavior of Fe-18Cr-l0Mn steel with various carbon and nitrogen contents was characterized, and the effect of carbon and nitrogen contents on the wear was investigated. Dry sliding wear tests of the steel were carried out at room temperature against an AISI 52100 bearing steel ball using a pin-on-disk wear tester. Applied wear loads were varied from 10 N to 100 N, and the sliding distance was fixed as 720 m. Worn surfaces and the wear debris of the steel were examined using an SEM to find out the wear mechanism. It was found that the Fe-18Cr-10Mn with both carbon and nitrogen exhibited superior wear resistance to the steel with only nitrogen. The wear resistance of the Fe-18Cr-10Mn-xC-yN alloy increased with the increase of the carbon content. The excellent wear resistance of the Fe-18Cr-10Mn-xC-yN alloy was explained by the increased strain-hardening capability with the interstitial atoms.

  • PDF

Effects of Counterpart Materials on Wear Behavior of Thermally Sprayed STS316 Coatings (STS316 용사코팅층의 마모거동에 미치는 상대마모재의 영향)

  • Lee, Jae-Hong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.58-63
    • /
    • 2014
  • This paper deals with the effects of counterpart materials on the wear behavior of thermally sprayed STS316 coatings. STS316 powders were flame-sprayed onto a carbon steel substrate. Dry sliding wear tests were performed using the applied loads of 15 N. AISI52100, $Al_2O_3$, $ZrO_2$ and $Si_3N_4$ balls were used as counterpart materials. Wear behavior of STS316 coatings against different counterpart materials were studied using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS). The results show that the wear behavior of thermally sprayed STS316 coatings strongly depends on the type of counterpart material. Dominant wear mechanism was similar for all studied materials as failure of adhesion film except for Si3N4 used as counterpart material. In the case of Si3N4 used as counterpart material, dominant wear mechanism was abrasion.

Tribological and Corrosion Behavior of Multilayered $WC-Ti_{1-x}Al_xN$ Coatings Deposited by Cathodic Arc Deposition Process on High Speed Steel

  • S.H. Ahn;J.H. Yoo;Park, Y.S.;Kim, J.G.;Lee, H.Y.;J.G. Han
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.31-32
    • /
    • 2001
  • Recently, many of the current development in surface modification engineering are focused on multilayered coatings. Multilayered coatings have the potential to improve the tribological and corrosion properties of tools and components. By using cathodic arc deposition, $WC-Ti_{1-x}Al_xN$ multilayers were deposited on steel substrates. Wear tests of four multiplayer coatings were performed using a ball-on-disc configuration with a linear sliding speed of 0.1m/s, 5N load. The tests were carried out at room temperature in airby employing AISI 52100 steel ball ($H_v=848N$) of 11mm in diameter. Electrochemical tests were performed using the potentiodynamic and electrochemical impedance spectroscopy (EIS) measurements. The surface morphology and topography of the wear scars of tribo-element and the corroded specimen have been determined by using scanning electron spectroscopy (SEM). Also, wear mechanism was determined by using SEM coupled with EDS. Results have showed an improved wear resistance and corrosion resistance of the $WC-Ti_{1-x}Al_xN$ coatings.

  • PDF

Improvement of Tribological Characteristics of Multi-Scale Laser-Textured Surface in terms of Lubrication Regime (윤활영역에서 멀티크기 Laser Surface Texturing 효과)

  • Kim, Jong-Hyoung;Choi, Si Geun;Segu, Dawit Zenebe;Jung, Yong-Sub;Kim, Seock-Sam
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Laser Surface Texturing(LST) is a surface engineering process used to improve tribological characteristics of materials by creating patterned microstructures on the mechanical contact surface. In LST technology, a pulsated laser beam is used to create arranged dimples on a surface by a material ablation process, which can improve such as load capacity, wear resistances, lubrication lifetime, and reduce friction coefficients. In the present study, the effect of multi-scale LST on lubricant regime was investigated. A pulsed Nd:YAG laser was applied on the bearing steel(AISI 52100) to create arranged dimples. To optimize the surface texturing effect on friction, multi-scale texture dimples with some specific formula arrays were fabricated by combining circles, ellipses and the laser ablation process. The tribological testing of multi-scale textured surface was performed by a flat-on-flat unidirectional tribometer under lubrication and the results compared with that of the non-textured surface. Through an increase in sliding speed, the beneficial effect of multi-scale LST performance was achieved. The multi-scale textured surface had lower friction coefficient performances than the non-textured surface due to the hydrodynamic lubrication effect.

Comparison of Rolling Element Loads and Stress-based Fatigue Life Predictions for Ball Bearings (볼 베어링의 전동체 기반 및 응력 기반 접촉 피로수명의 비교)

  • Kwak, Jae Seob;Park, Yong Whan;Kim, Chan Jung;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.371-377
    • /
    • 2020
  • In In this study, we compared the results of a ball bearing life prediction model based on rolling element loads with the results of fatigue life prediction of ball bearings when a stress-based contact fatigue life prediction technique is applied to the ball bearing. We calculate the load acting on each rolling element by the external load of the bearing and apply the result to the Lundberg-Palmgren (LP) theory to calculate ball bearing life based on the rolling element. We also calculate stress-based ball bearing life through contact and fatigue analyses based on contact modeling of the ball and raceway while considering the fatigue test results of AISI 52100 steel. In stress-based life prediction, we use three high-cycle fatigue-determination equations that can predict the fatigue life when multi-axis proportional loads such as rolling-slide contact conditions are applied. These equations are derived from the stress invariant and critical plane methods and the mesoscopic approach. Life expectancy results are compared with those of the LP model. Results of the analysis indicated that the fatigue life was predicted to be lower in the order of the Crossland, Dang Van, and Matake models. Of the three, the Dang Van fatigue model was found to be the closest to the LP life.