• Title/Summary/Keyword: AIMM algorithm

Search Result 10, Processing Time 0.031 seconds

An Intelligent Tracking Method for a Maneuvering Target

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.93-100
    • /
    • 2003
  • Accuracy in maneuvering target tracking using multiple models relies upon the suit-ability of each target motion model to be used. To construct multiple models, the interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require predefined sub-models and predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers. To solve these problems, this paper proposes the GA-based IMM method as an intelligent tracking method for a maneuvering target. In the proposed method, the acceleration input is regarded as an additive process noise, a sub-model is represented as a fuzzy system to compute the time-varying variance of the overall process noise, and, to optimize the employed fuzzy system, the genetic algorithm (GA) is utilized. The simulation results show that the proposed method has a better tracking performance than the AIMM algorithm.

A GA-Based IMM Method for Tracking a Maneuvering Target (기동표적 추적을 위한 유전 알고리즘 기반 상호작용 다중모델 기법)

  • Lee Bum-Jik;Joo Young-Hoon;Park Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.16-21
    • /
    • 2003
  • The accuracy in maneuvering target tracking using multiple models is resulted in by the suitability of each target motion model to be used. The interacting multiple model (IMM) method and the adaptive IMM (AIMM) method require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems, a genetic algorithm(GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to calculate the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulation.

GA-Based IMM Method for Tracking a Maneuvering Target (기동 표적 추적을 위한 유전 알고리즘 기반 상호 작용 다중 모델 기법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2382-2384
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

GA-Based IMM Method Using Fuzzy Logic for Tracking a Maneuvering Target (기동 표적 추적을 위한 GA 기반 IMM 방법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.166-169
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model, and the GA is applied to identify this fuzzy model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

IMM Method Using Intelligent Input Estimation for Maneuvering Target Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1278-1282
    • /
    • 2003
  • A new interacting multiple model (IMM) method using intelligent input estimation (IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The genetic algorithm (GA) is utilized to optimize a fuzzy system for a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

IMM Method Using Kalman Filter with Fuzzy Gain (퍼지 게인을 갖는 칼만필터를 이용한 IMM 기법)

  • Hoh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.425-428
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, to exactly estimate for each sub-model, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). Finally, the tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and input estimation (IE) method through computer simulations.

  • PDF

IMM Method Using Kalman Filter with Fuzzy Gain

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.234-239
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, the unknown acceleration input for each sub-model is determined by mismatches between the modelled target dynamics and the actual target dynamics. After a acceleration input is detected, the state estimates for each sub-filter are modified. To modify the accurate estimation, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model(AIMM) method and input estimation (IE) method through computer simulations.

IMM Method Using GA-Based Intelligent Input Estimation for Maneuvering target Tracking (기동표적 추적을 위한 유전 알고리즘 기반 지능형 입력추정을 이용한 상호작용 다중모델 기법)

  • 이범직;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.99-102
    • /
    • 2003
  • A new interacting multiple model (IMM) method using genetic algorithm (GA)-based intelligent input estimation(IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The GA is utilized to optimize a fuzzy system fur a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation(IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

Maneuvering Target Tracking Using the IMM method Based on Intelligent Input Estimation (지능형 입력추정에 기반한 상호작용 다중모델 기법을 이용한 기동표적 추적)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2085-2087
    • /
    • 2003
  • A new interacting multiple model (IMM) method based on intelligent input estimation (IIE) is proposed for tracking a maneuvering target. In the proposed method, the acceleration level of each sub-filter is determined by IIE using the fuzzy system, which is optimized by the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method in computer simulations.

  • PDF

A Fuzzy-Neural Network-Based IMM Method Tracking System (퍼지 뉴럴 네트워크 기반 다중모델 기법 추적 시스템)

  • Son Hyun-Seung;Joo Young-Hoon;Park Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.472-478
    • /
    • 2006
  • This paper presents a new fuzzy-neural-network based interacting multiple model (FNNBIMM) algorithm for tracking a maneuvering target. To effectively handle the unknown target acceleration, this paper regards it as additional noise, time-varying variance to target model. Each sub model characterized by the variance of the overall process noise, which is obtained on the basis of each acceleration interval. Since it is hard to approximate this time-varying variance adaptively owing to the unknown acceleration, the FNN is utilized to precisely approximate this time-varying variance. The error back-propagation method is utilized to optimize each FNN. To show the feasibility of the proposed algorithm, a numerical example is provided.