• Title/Summary/Keyword: AI.디지털 교육

Search Result 120, Processing Time 0.021 seconds

Digital Information Service for Lone Elderly (독거노인을 위한 디지털 알리미 서비스)

  • Han, Jeong-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.520-522
    • /
    • 2022
  • Lone Death is increasing as elderly population increases. Lone elderly is vulnerable in society for many reasons. This paper explores digital solution to protect solitary in society. First, sensor and AI care robot can be used to collect digital data and situation check. Second, digital device is checked regularly and visiting is expanded in digital environment. Third, digital emergency security system should be established. Fourth, user education is to be regularly carried out including complementary education.

  • PDF

Preservice teachers' evaluation of artificial intelligence -based math support system: Focusing on TocToc-Math (예비교사의 인공지능 지원시스템에 대한 평가: 똑똑! 수학탐험대를 중심으로)

  • Sheunghyun, Yeo;Taekwon Son;Yun-oh Song
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.369-385
    • /
    • 2024
  • With the advancement of digital technology, a variety of digital materials are being utilized in education. For their appropriate use of digital resources, teachers need to be able to evaluate the quality of digital resource and determine the suitability for teaching. This study explored how preservice teachers evaluate TocToc-Math, an Artificial Intelligence (AI)-based math support system. Based on an evaluation framework developed through prior research, preservice teachers evaluated TocToc-Math with evidence-based criteria, including content quality, pedagogy, technology use, and mathematics curriculum alignment. The findings shows that preservice teachers positively evaluated TocToc-Math overall. The evaluation tendencies of preservice teachers were classified into three groups, and the specific characteristics of each factor differed depending on the group. Based on the research results, we suggest implications for improving preservice teachers' evaluation abilities regarding the use of digital technology and AI in mathematics education.

Ethics-Literacy Curriculum Modeling for Ethical Practice of 5G Information Professionals (5G 정보환경 정보전문가를 위한 윤리 리터러시 교육과정 모형연구)

  • Yoo, Sarah
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.1
    • /
    • pp.139-166
    • /
    • 2022
  • Ethical Issues increase when people engage in smart technological systems such as 5G, IoT, Cloud computing services and AI applications. Range of this research is comparison of various literacy concepts and its ethical issues in considering of 5G features and UX. 86 research papers and reports which have been published within the recent 5 years (2017-2022), relating the research subject, are investigated and analyzed. Two results show that various literacies can be grouped into four areas and that some of common issues among those areas as well as unique issues of each area are identified. Based on the literature analysis, an Operational Definition of Ethics-Literacy is presented and the model of ethics-literacy curriculum supporting ethical behavior of 5G information professionals is developed and suggested.

Analysis of the Meaning of the 2022 Revised Curriculum (2022 개정 교육과정 의미 분석)

  • Han, Yoon Ok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.59-69
    • /
    • 2022
  • The purpose of this study is to suggest improvement directions by analyzing the meaning of the 2022 revised curriculum. Research methods include literature research, surveys, and interviews. The conclusion is as follows. First, The background of the promotion has been revised to cultivate the competencies necessary for the future society and to strengthen the learner-tailored education. Second, what characterizes the 2022 revised curriculum is that it is being created in collaboration with people as a future-oriented curriculum for the first time in history. Third, the implementation of the 2022 revised curriculum is being directed towards individuality and diversity, decentralization and autonomy, digitally based education, and public performance and accountability. Fourth, the principal contents are curriculum innovation in response to future changes, cultivating community values and capacity building for learners, strengthening education for elementary, middle, and high school students to develop digital and AI literacy, and strengthening the curriculum for all.

Analysis of generative AI's mathematical problem-solving performance: Focusing on ChatGPT 4, Claude 3 Opus, and Gemini Advanced (생성형 인공지능의 수학 문제 풀이에 대한 성능 분석: ChatGPT 4, Claude 3 Opus, Gemini Advanced를 중심으로)

  • Sejun Oh;Jungeun Yoon;Yoojin Chung;Yoonjoo Cho;Hyosup Shim;Oh Nam Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.549-571
    • /
    • 2024
  • As digital·AI-based teaching and learning is emphasized, discussions on the educational use of generative AI are becoming more active. This study analyzed the mathematical performance of ChatGPT 4, Claude 3 Opus, and Gemini Advanced on solving examples and problems from five first-year high school math textbooks. As a result of examining the overall correct answer rate and characteristics of each skill for a total of 1,317 questions, ChatGPT 4 had the highest overall correct answer rate of 0.85, followed by Claude 3 Opus at 0.67, and Gemini Advanced at 0.42. By skills, all three models showed high correct answer rates in 'Find functions' and 'Prove', while relatively low correct answer rates in 'Explain' and 'Draw graphs'. In particular, in 'Count', ChatGPT 4 and Claude 3 Opus had a correct answer rate of 1.00, while Gemini Advanced was low at 0.56. Additionally, all models had difficulty in explaining using Venn diagrams and creating images. Based on the research results, teachers should identify the strengths and limitations of each AI model and use them appropriately in class. This study is significant in that it suggested the possibility of use in actual classes by analyzing the mathematical performance of generative AI. It also provided important implications for redefining the role of teachers in mathematics education in the era of artificial intelligence. Further research is needed to develop a cooperative educational model between generative AI and teachers and to study individualized learning plans using AI.

Development of the Liberal Arts Course for Informatics, Mathematics, and Science Convergence Education using No Code Data Analysis Tool (노 코드 데이터 분석 도구를 활용한 정보·수학·과학 융합교육 교양 강좌 개발)

  • Soyul Yi;Youngjun Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.447-448
    • /
    • 2023
  • 본 연구에서는 비전공자들을 위한 디지털 교육을 위하여 노 코드 프로그램을 활용한 정보, 수학, 과학 융합교육 교양 강좌를 개발하였다. 노 코드 프로그램으로는 오렌지3 데이터 마이닝을 선정하였는데, 이는 데이터 분석, 시각화, 머신러닝 모델의 활용이 용이하다는 강점을 가지고 있다. 또한, 산업환경 변화에 대비하는 핵심 교과인 과학, 수학, 정보의 중요성과 데이터 분석과의 밀접성을 고려하여 교육 내용을 융합할 수 있도록 선정하였다. 개발된 교육 프로그램은 8인이 전문가 검토 결과 내용 타당도가 확보되었음을 확인할 수 있었다. 추후 연구에서는 이 강좌를 대학의 학부생에게 적용하여 그 효과성을 확인해 보고자 한다.

  • PDF

A Study on Development Strategies for Artificial Intelligence-Based Personalized Mathematics Learning Services (인공지능 기반 개인 맞춤 수학학습 서비스 개발 방향에 관한 연구)

  • Joo-eun Hyun;Chi-geun Lee;Daehwan Lee;Youngseok Lee;Dukhoi Koo
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.605-614
    • /
    • 2023
  • In In the era of digital transition, AI-based personalized services are emerging in the field of education. This research aims to examine the development strategies for implementing AI-based learning services in school. Focusing on AI-based math learning service "Math Cell" developed by i-Scream Edu, this study surveyed the functional requirements from the perspective of an educator. The results were analyzed for importance and suitability using IPA, and expert opinions were surveyed to explore specific development directions for the service. Consequently, importance in all areas such as diagnosis, learning, evaluation, and management averaged 4.82 and performance averaged 4.56, showing excellent results in most questions, and in particular, importance was higher than performance. Among certain detailed functions, concept learning, customized task presentation, evaluation result analysis function, dashboard-related functions, and learning materials in the dashboard were not intuitive for students to understand and had to be supplemented. This study provides meaningful insights by summarizing expert opinions on AI-based personalized mathematics learning services, thereby contributing to the exploration of the development strategies for "Math Cell".

A Study on the Analysis and Implementation of Teaching-Learning Methods for the Curriculum in the Generative AI Era : Focusing on the Particles and Waves of Light Unit in Science (생성형 AI 시대의 교과 교육과정을 위한 교수-학습 방법 분석 및 실행 방안 연구 : 과학과 빛의 입자와 파동 단원을 중심으로)

  • Park Somin;Hong Hoojo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.3
    • /
    • pp.37-59
    • /
    • 2024
  • The current application of Generative AI in education requires enhancing skills and competencies for both instructors and students in the Age of Digital Formation. The knowledge, skills, and attitudes necessary for individualized education should be cultivated in schools, along with the ability to develop AI-compatible learning resources. Today's educational environment aligns with the demands of the Generative AI Era. Consequently, there is a need for an educational system that promotes critical thinking and creativity while connecting students to the global context. This study examined the teaching and learning processes, along with educational exploration, to understand the properties of light particles and waves within a competency-based science curriculum. The analysis and research findings aimed at devising a competency-based teaching-learning method for students' understanding of light particles and waves are as follows: First, unit analysis confirmed the significance of competency-oriented education and facilitated the structuring of units on light and waves. Second, qualitative content analysis outlined the procedures for applying conceptual knowledge and functions in experiential learning, as well as the process of feedback delivery. Third, the study highlighted the need for a meticulous approach to inducing problem recognition through inquiry and discussion activities, ensuring that students, when exploring and recognizing problems independently, do not develop misconceptions.

Analysis of Primary and Secondary Informatics Curriculum Content Components Based on Computing Curricula 2020 (Computing Curricula 2020에 기반한 국내 초·중등 정보 교육과정 내용 요소 분석)

  • JaeRi Jeong;Seong-Won Kim;Youngjun Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.233-236
    • /
    • 2023
  • 본 연구에서는 Computing Curricula 2020에서 제시하고 있는 지식 요소를 바탕으로 초등학교 실과와 중학교 정보 교과의 내용 요소의 변화를 비교·분석해 보았다. 연구 결과, 초등학교는 2022 개정 교육과정에서 총 5개의 지식 요소를 포함하였고, '컴퓨팅 시스템 기초', '디지털 디자인'과 관련한 내용 요소가 추가되었다. 중학교는 2022 개정 교육과정에서 총 11개의 지식 요소를 포함하였고, '운영체제', '지능 시스템(AI)'과 관련한 내용 요소가 추가되었다. 그 중 내용 요소의 비율이 크게 변화한 영역은 '소프트웨어 설계', '자료구조 및 알고리즘과 복잡도', '운영체제', '지능 시스템(AI)' 등이었다. 향후 연구에서는 본 연구에서 분석하지 못한 고등학교 정보과의 내용 요소를 분석해보고자 한다.

  • PDF

Digital Human Empathy Index (DHEI) for the Era of Human-AI Symbiosis (AI와 인간 공생의 시대를 위한 디지털휴먼공감지표 개발)

  • Rhee, Hyunjung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.1-16
    • /
    • 2022
  • The current AI technology has been developing rapidly enough to realize or even exceed the level of abilities that only humans had in the past. In the near future, it is predicted that humans and AI will influence each other as members of the metaverse society. Therefore, this study emphasizes the importance of empathy as a core competency for humans to pursue happiness while maintaining the dignity of humans in the era when AI and humans will coexist in the metaverse. In this study, 'Digital Human Empathy Index (DHEI)' is developed that reflects the social nature of computer-mediated communication in the metaverse As a result, DHEI consisted of a total of 7 factors, which are Perspective Taking, Self/Other Awareness, Contextual Understanding of Systemic Barriers, Impact Assessment, Solidarity, Being Peaceful, and Anthropomorphism. This study is expected to contribute to setting the direction of future education by suggesting a new measure of empathy.