• Title/Summary/Keyword: AI-based System and Technology

Search Result 467, Processing Time 0.037 seconds

Determination of coagulant input rate in water purification plant using K-means algorithm and GBR algorithm (K-means 알고리즘과 GBR 알고리즘을 이용한 정수장 응집제 투입률 결정 기법)

  • Kim, Jinyoung;Kang, Bokseon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.792-798
    • /
    • 2021
  • In this paper, an algorithm for determining the coagulant input rate in the drug-injection tank during the process of the water purification plant was derived through big data analysis and prediction based on artificial intelligence. In addition, analysis of big data technology and AI algorithm application methods and existing academic and technical data were reviewed to analyze and review application cases in similar fields. Through this, the goal was to develop an algorithm for determining the coagulant input rate and to present the optimal input rate through autonomous driving simulator and pilot operation of the coagulant input process. Through this study, the coagulant injection rate, which is an output variable, is determined based on various input variables, and it is developed to simulate the relationship pattern between the input variable and the output variable and apply the learned pattern to the decision-making pattern of water plant operating workers.

Iris Region Masking based on Blurring Technique (블러링기법 기반의 홍채영역 마스킹 방법)

  • Lee, Gi Seong;Kim, Soo Hyung
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.25-30
    • /
    • 2022
  • With the recent development of device performance such as smartphones, cameras, and video cameras, it has become possible to obtain human biometric information from images and photos. A German hacker group obtained human iris information from high-definition photos and revealed hacking into iris scanners on smartphones. As high-quality images and photos can be obtained with such advanced devices, the need for a suitable security system is also emerging. Therefore, in this paper, we propose a method of automatically masking human iris information in images and photos using Haar Cascades and Blur models from openCV. It is a technology that automatically masks iris information by recognizing a person's eye in a photo or video and provides the result. If this technology is used in devices and applications such as smartphones and zoom, it is expected to provide better security services to users.

Plans to Improve Smart Village and Its Challenges (스마트 빌리지, 그 계획과 도전)

  • Eom, Seong-Jun;Kim, Sang-Bum;Cho, Suk-Yeong;An, Phil-Gyun
    • Journal of Agricultural Extension & Community Development
    • /
    • v.27 no.4
    • /
    • pp.173-184
    • /
    • 2020
  • Is the Fourth Industrial Revolution a revolution for cities only? Through the Fourth Industrial Revolution, Korea has entered quickly in the influence area of intelligent information technology such as IoT, AI, Big data, Cloud, ICT, Digital twin. However, as the information gap between the rural zone and the urban zone worsens, a policy was needed to reduce such a gap. Therefore, this research analyzed EU's smart village project, and investigated the problem and improvement of the actual smart village through the interview and field study with the person in charge of the actual smart village project in Korea. Based on the analytic result, 5 plans were deduced to improve Korea's smart village project. First, make the realistic adjustment of project period to assure the sustainability of smart village; second, make the new establishment of the department in charge of smart village project; third, construct the system of integrating and cooperating the policy that can embrace all the rural zone and the urban zone; the fourth, expand the application area of customized ICT technology according to the new rural policy environment; and finally introduce the residents' capacity development project through the rural guidance project.

A Review on Detection of COVID-19 Cases from Medical Images Using Machine Learning-Based Approach

  • Noof Al-dieef;Shabana Habib
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.59-70
    • /
    • 2024
  • Background: The COVID-19 pandemic (the form of coronaviruses) developed at the end of 2019 and spread rapidly to almost every corner of the world. It has infected around 25,334,339 of the world population by the end of September 1, 2020 [1] . It has been spreading ever since, and the peak specific to every country has been rising and falling and does not seem to be over yet. Currently, the conventional RT-PCR testing is required to detect COVID-19, but the alternative method for data archiving purposes is certainly another choice for public departments to make. Researchers are trying to use medical images such as X-ray and Computed Tomography (CT) to easily diagnose the virus with the aid of Artificial Intelligence (AI)-based software. Method: This review paper provides an investigation of a newly emerging machine-learning method used to detect COVID-19 from X-ray images instead of using other methods of tests performed by medical experts. The facilities of computer vision enable us to develop an automated model that has clinical abilities of early detection of the disease. We have explored the researchers' focus on the modalities, images of datasets for use by the machine learning methods, and output metrics used to test the research in this field. Finally, the paper concludes by referring to the key problems posed by identifying COVID-19 using machine learning and future work studies. Result: This review's findings can be useful for public and private sectors to utilize the X-ray images and deployment of resources before the pandemic can reach its peaks, enabling the healthcare system with cushion time to bear the impact of the unfavorable circumstances of the pandemic is sure to cause

Research on Stock price prediction system based on BLSTM (BLSTM을 이용한 주가 예측 시스템 연구)

  • Hong, Sunghyuck
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.19-24
    • /
    • 2020
  • Artificial intelligence technology, which is the core of the 4th industrial revolution, is making intelligent judgments through deep learning techniques and machine learning that it is impossible to predict if it is applied to stock prediction beyond human capabilities. In US fund management companies, artificial intelligence is replacing the role of stock market analyst, and research in this field is actively underway. In this study, we use BLSTM to reduce errors that occur in unidirectional prediction of the existing LSTM method, reduce errors in predictions by predicting in both directions, and macroscopic indicators that affect stock prices, namely, economic growth rate, economic indicators, interest rate, analyze the trade balance, exchange rate, and volume of currency. To help stock investment by accurately predicting the target price of stocks by analyzing the PBR, BPS, and ROE of individual stocks after analyzing macro-indicators, and by analyzing the purchase and sale quantities of foreigners, institutions, pension funds, etc., which have the most influence on stock prices.

The Effect of Team Characteristics of Technology-based Startup Programs on Patent Performance: Focusing on Team Diversity (기술기반 창업 프로그램의 팀 특성이 특허 성과에 미치는 효과 분석: 팀 다양성을 중심으로)

  • Lee, Jai Ho;Sohn, Youngwoo;Han, Jung Wha;Lee, Sang-Myung
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2024
  • The global Industry has been shaped by start-ups that originated with knowledge-based innovative strategies or technologies in the 21st century. Specifically, laboratory start-ups that rely on research papers or patents for new technology development are recognized for their high survival rate and the creation of employment opportunities. Our study concentrated on 'I-Corps', which also introduced in Korea, standing for innovation corps is a laboratory startup program launched in 2011 by the NSF(National Research Foundation) to commercialize R&D results and foster entrepreneurship as part of the policy to build a start-up system at the national innovation level. In this study, we proposed and empirically tested a research model focusing on teams participating in the I-Corps program to determine how startup team diversity, among the team characteristics of laboratory startups, affected patent performance. As a result of the analysis, among the proposed variables, age diversity, educational background diversity, and value diversity had a significant impact on patent performance. The results of this study are expected to further strengthen the theoretical and practical foundations of researchers or practitioners of the I-Corps program, as well as related areas involving technology & laboratory startups, intellectual property and knowledge management fields in the future.

For Improving Security Log Big Data Analysis Efficiency, A Firewall Log Data Standard Format Proposed (보안로그 빅데이터 분석 효율성 향상을 위한 방화벽 로그 데이터 표준 포맷 제안)

  • Bae, Chun-sock;Goh, Sung-cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.1
    • /
    • pp.157-167
    • /
    • 2020
  • The big data and artificial intelligence technology, which has provided the foundation for the recent 4th industrial revolution, has become a major driving force in business innovation across industries. In the field of information security, we are trying to develop and improve an intelligent security system by applying these techniques to large-scale log data, which has been difficult to find effective utilization methods before. The quality of security log big data, which is the basis of information security AI learning, is an important input factor that determines the performance of intelligent security system. However, the difference and complexity of log data by various product has a problem that requires excessive time and effort in preprocessing big data with poor data quality. In this study, we research and analyze the cases related to log data collection of various firewall. By proposing firewall log data collection format standard, we hope to contribute to the development of intelligent security systems based on security log big data.

Rotation Angle Estimation Method using Radial Projection Profile (방사 투영 프로파일을 이용한 회전각 추정 방법)

  • Choi, Minseok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.20-26
    • /
    • 2021
  • In this paper, we studied the rotation angle estimation methods required for image alignment in an image recognition environment. In particular, a rotation angle estimation method applicable to a low specification embedded-based environment was proposed and compared with the existing method using complex moment. The proposed method estimates the rotation angle through similarity mathcing of the 1D projection profile along the radial axis after converting an image into polar coordinates. In addition, it is also possible to select a method of using vector sum of the projection profile, which more simplifies the calculation. Through experiments conducted on binary pattern images and gray-scale images, it was shown that the estimation error of the proposed method is not significantly different from that of complex moment-based method and requires less computation and system resources. For future expansion, a study on how to match the rotation center in gray-scale images will be needed.

An Intelligent CCTV-Based Emergency Detection System for Rooftop Access Control Problems (옥상 출입 통제 문제 해결을 위한 지능형 CCTV 기반 비상 상황 감지 시스템 제안)

  • Yeeun Kang;Soyoung Ham;Seungchae Joa;Hani Lee;Seongmin Kim;Hakkyong Kim
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.59-68
    • /
    • 2024
  • With advancements in artificial intelligence technology, intelligent CCTV systems are being deployed across various environments, such as river bridges and construction sites. However, a conflict arises regarding the opening and closing of rooftop access points due to concerns over potential accidents and crime incidents and their role as emergency evacuation spaces. While the relevant law typically mandates the constant opening of designated rooftop access points, closures are often tacitly permitted in practice for security reasons, with a lack of appropriate legal measures. In this context, this study proposes a detection system utilizing intelligent CCTV to respond to emergencies that may occur on rooftops. We develop a system based on the YOLOv5 object detection model to detect assault and suicide attempts by jumping, introducing a new metric to assess them. Experimental results demonstrate that the proposed system rapidly detects assault and suicide attempts with high accuracy. Additionally, through a legal analysis of rooftop access point management, deficiencies in the legal framework regarding rooftop access and CCTV installation are identified, and improvement measures are proposed. With technological and legal improvements, we believe that crime and accident incidents in rooftop environments will decrease.

Operational Ship Monitoring Based on Integrated Analysis of KOMPSAT-5 SAR and AIS Data (Kompsat-5 SAR와 AIS 자료 통합분석 기반 운영레벨 선박탐지 모니터링)

  • Kim, Sang-wan;Kim, Dong-Han;Lee, Yoon-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.327-338
    • /
    • 2018
  • The possibility of ship detection monitoring at operational level using KOMPSAT-5 Synthetic Aperture Radar (SAR) and Automatic Identification System (AIS) data is investigated. For the analysis, the KOMPSAT-5 SLC images, which are collected from the west coast of Shinjin port and the northern coast of Jeju port are used along with portable AIS data from near the coast. The ship detection algorithm based on HVAS (Human Visual Attention System) was applied, which has significant advantages in terms of detection speed and accuracy compared to the commonly used CFAR (Constant False Alarm Rate). As a result of the integrated analysis, the ship detection from KOMPSAT-5 and AIS were generally consistent except for small vessels. Some ships detected in KOMPSAT-5 but not in AIS are due to the data absence from AIS, while it is clearly visible in KOMPSAT-5. Meanwhile, SAR imagery also has some false alarms due to ship wakes, ghost effect, and DEM error (or satellite orbit error) during object masking in land. Improving the developed ship detection algorithm and collecting reliable AIS data will contribute for building wide integrated surveillance system of marine territory at operational level.