• 제목/요약/키워드: AI-OCR

검색결과 19건 처리시간 0.026초

금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용 (Deep Learning OCR based document processing platform and its application in financial domain)

  • 김동영;김두형;곽명성;손현수;손동원;임민기;신예지;이현정;박찬동;김미향;최동원
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.143-174
    • /
    • 2023
  • 인공지능의 발전과 함께 딥러닝을 활용한 인공지능 광학문자인식 기법 (Artificial Intelligence powered Optical Character Recognition, AI-OCR) 의 등장은 기존의 이미지 처리 기반 OCR 기술의 한계를 넘어 다양한 형태의 이미지로부터 여러 언어를 높은 정확도로 읽어낼 수 있는 모델로 발전하였다. 특히, AI-OCR은 인력을 통해 대량의 다양한 서류 처리 업무를 수행하는 금융업에 있어 그 활용 잠재력이 크다. 본 연구에서는 금융권내 활용을 위한 AI-OCR 모델의 구성과 설계를 제시하고, 이를 효율적으로 적용하기 위한 플랫폼 구축 및 활용 사례에 대해 논한다. 금융권 특화 딥러닝 모델을 만듦에 있어 금융 도메인 데이터 사용은 필수적이나, 개인정보보호법 이하 실 데이터의 사용이 불가하다. 이에 본 연구에서는 딥러닝 기반 데이터 생성 모델을 개발하였고, 이를 활용하여 AI-OCR 모델 학습을 진행하였다. 다양한 서류 처리에 있어 유연한 데이터 처리를 위해 단계적 구성의 AI-OCR 모델들을 제안하며, 이는 이미지 전처리 모델, 문자 탐지 모델, 문자 인식 모델, 문자 정렬 모델 및 언어 처리 모델의 선택적, 단계적 사용을 포함한다. AI-OCR 모델의 배포를 위해 온프레미스(On-Premise) 및 프라이빗 클라우드(Private Cloud) 내 GPU 컴퓨팅 클러스터를 구성하고, Hybrid GPU Cluster 내 컨테이너 오케스트레이션을 통한 고효율, 고가용 AI-OCR 플랫폼 구축하여 다양한 업무 및 채널에 적용하였다. 본 연구를 통해 금융 특화 AI-OCR 모델 및 플랫폼을 구축하여 금융권 서류 처리 업무인 문서 분류, 문서 검증 및 입력 보조 시스템으로의 활용을 통해 업무 효율 및 편의성 증대를 확인하였다.

Study on OCR Enhancement of Homomorphic Filtering with Adaptive Gamma Value

  • Heeyeon Jo;Jeongwoo Lee;Hongrae Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.101-108
    • /
    • 2024
  • AI-OCR은 광학 문자 인식(OCR) 기술과 Artificial intelligence(AI)의 결합으로 사람의 인식이 필요하던 OCR의 단점을 보완하는 기술 향상을 이뤄내고 있다. AI-OCR의 성능을 높이기 위해서는 다양한 학습데이터의 훈련이 필요하다. 하지만 이미지 색상이 비슷한 밝기를 가진 경우에는 인식률이 떨어지기 때문에, Homomorphic filtering(HF)을 이용한 전처리 과정으로 색상 차이를 분명하게 하여 텍스트 인식률을 높이게 된다. HF은 감마값을 이용해 이미지의 고주파와 저주파를 각각 조절한다는 점에서 텍스트 추출에 적합하지만 감마값의 조절이 수동적으로 이뤄지는 단점이 존재한다. 본 연구는 시험적 과정을 거쳐 이미지의 대비, 밝기 및 엔트로피를 근거하는 감마의 임계값 범위를 제안한다. 제안된 감마값 범위를 적용한 HF의 실험 결과는 효율적인 AI-OCR의 높은 등장 가능성을 시사한다.

OCR과 패턴분석 알고리즘을 활용한 인공지능 기반 기록 자동화 서비스 제안 (Proposal Record Automation Service Based on AI by Using OCR and Pattern Analysis Algorithm)

  • 황윤영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.530-532
    • /
    • 2019
  • 제안하는 서비스는 OCR(Optical Character Recognition, 광학문자인식)과 딥러닝 패턴분석 알고리즘을 활용하여 문서를 효율적으로 관리하는 서비스로 필기를 많이 하는 사용자를 위한 기능을 제공한다. 최근 다양한 분야에서의 머신러닝 기반의 OCR의 활용이 증가했지만 기존의 애플리케이션은 패턴 분석 알고리즘과 통계 기반의 OCR을 혼합하여 사용하기 때문에 필기체에 대한 인식률이 높지 않다. 이에 본 논문에서는 OCR과 패턴분석 알고리즘을 활용하여 필기체에 대한 높은 인식률을 제공하는 서비스를 제안한다.

종이기록 데이터화를 위한 AI-OCR 적용 사례연구 (A Case Study on the Application of AI-OCR for Data Transformation of Paper Records)

  • 안세진;황현호;임진희
    • 정보관리학회지
    • /
    • 제39권3호
    • /
    • pp.165-193
    • /
    • 2022
  • 현대 업무환경 변화의 중심은 디지털 기술이라고 할 수 있다. 특히 업무관리시스템 및 문서생산시스템에서 생산한 기록으로 업무를 증명하는 일반적인 공공기관에서 기록관리체계는 업무환경 그 자체이기도 하다. 김포시는 제4차 산업혁명기술 시대에 선제적으로 대응하고 업무환경 혁신을 이루기 위해 한국지능정보사회진흥원(NIA)의 2021년 공공부문 클라우드 선도 프로젝트 사업에 지원하였고 선도 기관으로 확정되어 3억 3천의 지원을 받아 공공 클라우드 기반의 AI-OCR을 통한 기록물 검색 및 활용기능 강화 프로젝트를 진행하였다. 이를 통해 규격화된 색인 값에 의존한 검색과 이미지 열람에 그치던 비전자기록의 한계를 넘어 데이터화 하였고 AI-OCR이라는 신기술 적용으로 98%의 인식률을 구현하였다. 공공기관에 디지털 기술을 사용하여 업무 효율화, 생산성 향상, 개발비용 절감, 내·외부 이용자들의 기록관리 서비스 수준의 제고를 이루었기에 신기술과 기록물관리의 결합 사례연구를 통해 기록관리 분야 본연의 전문성을 높이는 방향과 업무환경 혁신 구현 사례를 공유하고자 한다.

OCR을 이용한 AI기반 항만서류 자동인식에 관한 연구 -KNN 알고리즘 적용을 중심으로- (A Study on the Automatic Recognition of AI-based Port Documents Using OCR - Based on the application of KNN algorithm-)

  • 김종은
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.872-875
    • /
    • 2019
  • 우리나라의 수출입 화물 물량의 대부분은 항만을 통해 처리되고 있으며, 취급화물의 다양성과 선박의 대형화로 주변 국가들의 항만간 경쟁으로 심화되면서 항만 비용의 증가로 발생되고 있다. 이는 항만업무의 효율화와 생산성의 증가로 비용 감소효과를 바라볼 수 있는데, 4차 산업혁명의 주요 기술인 인공지능(OCR, AI알고리즘, 머신러닝, RPA등)의 기술 적용으로 개선할 수 있다. 본 연구에서는 이와 관련된 실질적 항만업무와 관련된 기술을 적용하여 업무의 효율화와 생산성 증가의 기술적 검증을 통해 항만의 경쟁력 강화와 국가 물류발전의 기술적 향상을 도모하고자 한다.

반려동물 질병예측서비스 및 통합관리 어플리케이션 (Pet Disease Prediction Service and Integrated Management Application)

  • 표기두;이동영;정원세;권오준;한경숙
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권6호
    • /
    • pp.133-137
    • /
    • 2023
  • 본 논문에서는 반려동물 AI 진단, 동물병원 찾기, 스마트 가계부, 커뮤니티 기능을 하나로 모은 '반려동물 종합관리 어플리케이션'을 개발하였다. 해당 어플리케이션은 여러 기능을 각각의 다른 어플리케이션으로 사용해야 하는 사용자의 불편함을 해소할 수 있으며, 사진을 통해 쉽게 반려동물 AI 진단 서비스를 이용할 수 있고, 크롤링을 이용한 동물병원 정보 제공과 주변의 동물병원 찾기, OCR 텍스트 추출 기법으로 영수증을 스캔할 수 있는 스마트 가계부, 어플리케이션 사용자 간의 커뮤니티 기능을 지원한다. 본 어플리케이션을 사용함으로써 반려동물의 건강, 소비내역 등 양육에 필요한 정보를 하나의 시스템으로 관리할 수 있게 된다.

A Design and Implementation of Generative AI-based Advertising Image Production Service Application

  • Chang Hee Ok;Hyun Sung Lee;Min Soo Jeong;Yu Jin Jeong;Ji An Choi;Young-Bok Cho;Won Joo Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권5호
    • /
    • pp.31-38
    • /
    • 2024
  • 본 논문에서는 생성형 AI 기반의 광고 이미지 자동 제작 서비스를 제공하는 ASAP(AI-driven Service for Advertisement Production) 애플리케이션을 제안한다. 이 애플리케이션은 GPT-3.5 Turbo Instruct를 이용하여 사용자가 입력한 키워드에 적합한 배경 분위기와 홍보 문구를 생성한다. 이를 입력으로 하여 배경 이미지와 텍스트 이미지를 생성하기 위해 OpenAI사의 DALL·E 3 모델과 Stability AI사의 SDXL 모델을 활용한다. 추가적으로 OCR 기술을 활용하여 텍스트 이미지의 정확도를 높이고, 생성된 출력물들을 모두 합성하여 최종적인 광고를 제작한다. 또한 PILLOW, OpenCV 라이브러리의 텍스트 박스를 이용하여 전화번호, 영업시간 등 세부 사항을 홍보물의 가장자리에 삽입할 수 있도록 구현한다. 본 애플리케이션은 광고 제작에 어려움이 많은 소상공인들에게 광고를 쉽고 편리하게 제작할 수 있고, 광고 제작 비용을 절감할 수 있는 효과를 제공한다.

딥러닝 기반의 의료 OCR 기술 동향 (Trends in Deep Learning-based Medical Optical Character Recognition)

  • 윤성연;최아린;김채원;오수민;손서영;김지연;이현희;한명은;박민서
    • 문화기술의 융합
    • /
    • 제10권2호
    • /
    • pp.453-458
    • /
    • 2024
  • 광학 문자 인식(Optical Character Recognition, OCR)은 이미지 내의 문자를 인식하여 디지털 포맷(Digital Format)의 텍스트로 변환하는 기술이다. 딥러닝(Deep Learning) 기반의 OCR이 높은 인식률을 보여줌에 따라 대량의 기록 자료를 보유한 많은 산업 분야에서 OCR을 활용하고 있다. 특히, 의료 산업 분야는 의료 서비스 향상을 위해 딥러닝 기반의 OCR을 적극 도입하였다. 본 논문에서는 딥러닝 기반 OCR 엔진(Engine) 및 의료 데이터에 특화된 OCR의 동향을 살펴보고, 의료 OCR의 발전 방향에 대해 제시한다. 현재의 의료 OCR은 검출한 문자 데이터를 자연어 처리(Natural Language Processing, NLP)하여 인식률을 개선하였다. 그러나, 정형화되지 않은 손글씨(Handwriting)나 변형된 문자에서는 여전히 인식 정확도에 한계를 보였다. 의료 데이터의 데이터베이스(Database)화, 이미지 전처리(Pre-processing), 특화된 자연어 처리를 통해 더욱 고도화된 의료 OCR을 발전시키는 것이 필요하다.

Online to Offline 상점을 위한 한글 메뉴판 인식 : 어텐션 메커니즘을 적용한 VGG-ResNet 융합 모델 (Recognition of Korean Menu for Online to Offline Stores : VGG-ResNet Fusion Model with Attention Mechanism)

  • 시종욱;이상진;김성영
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.190-197
    • /
    • 2024
  • O2O 상점 모델은 온/오프라인의 경계를 허물어 고객에게 큰 편의성을 제공하는 플랫폼이다. 이러한 플랫폼을 효과적으로 운영하기 위해서는 소상공인들이 필요한 정보를 디지털 형태로 제공해야 한다. 특히, 한글 메뉴판을 디지털화하는 과정이 수동으로 진행될 경우 여러 문제점을 일으킬 수 있으며, OCR 기술 사용 시 한글의 인식 정확도가 낮아 오류 인식의 가능성이 높다. 이에 본 논문에서는 한글 메뉴판의 자동 인식을 위해 대표적인 OCR 모델인 EasyOCR을 기반으로 하되, 한글 문자 인식의 낮은 정확도를 개선하고자 한다. 제안하는 모델은 VGG와 ResNet의 구조적 장점을 통합하고, 어텐션 메커니즘을 도입하여 한글 문자의 인식 성능을 크게 향상시키도록 설계한다. 실험 결과, 제안하는 모델은 EasyOCR에 비해 Accuracy 기준 약 3.5%, Confidence Score와 Normalized Edit Distance 기준 약 1%의 인식 정확도 향상을 보였다. 따라서, 제안한 방법이 기존 문제를 효과적으로 해결할 수 있음을 입증한다.

인슈어테크(InsurTech)산업에서의 인공지능(AI)을 활용한 보험서비스 마케팅사례 연구 (Case Studies for Insurance Service Marketing Using Artificial Intelligence(AI) in the InsurTech Industry.)

  • 조재욱
    • 디지털융복합연구
    • /
    • 제18권10호
    • /
    • pp.175-180
    • /
    • 2020
  • 최근 활성화 되고 있는 인슈어테크(InsurTech) 산업에서의 인공지능(AI)을 활용한 보험서비스 마케팅 사례연구를 통해, 보험산업 생태계에서 혁신적인 기술(예: 인공지능, 기계학습 등)이 어떻게 활용되고 있는지 살펴보았다. 특히, 국내·외 서비스 사례연구를 통해 인공지능기술을 활용하여 파괴적 혁신을 가져온 미국의 레모네이드(Lemonade)사의 챗봇을 이용한 신속하고, 간편한 보험가입 및 보험금 지급 서비스, 국내 AI컴퍼니의 광학 문자 인식(OCR)기반의 진단서 입력을 통해 예상 보험금이 산출되는 보험금 산정서비스를 고찰해 보았다. 사례분석 결과 인공지능 기반의 수많은 고객데이터를 활용한 기계학습을 통해 보험 가입 및 지급 절차에 있어 리드타임을 획기적으로 단축하였고, 고객과 보험사간의 분쟁이 많은 보험금 산정에 있어서도 정확하고 합리적인 보험금을 산출함으로써, 고객만족과 고객가치를 높일 수 있었다.