• Title/Summary/Keyword: AI policy

Search Result 353, Processing Time 0.025 seconds

The Impact of Artificial Intelligence Adoption in Candidates Screening and Job Interview on Intentions to Apply (채용 전형에서 인공지능 기술 도입이 입사 지원의도에 미치는 영향)

  • Lee, Hwanwoo;Lee, Saerom;Jung, Kyoung Chol
    • The Journal of Information Systems
    • /
    • v.28 no.2
    • /
    • pp.25-52
    • /
    • 2019
  • Purpose Despite the recent increase in the use of selection tools using artificial intelligence (AI), far less is known about the effectiveness of them in recruitment and selection research. Design/methodology/approach This paper tests the impact of AI-based initial screening and interview on intentions to apply. We also examine the moderating role of individual difference (i.e., reliability on technology) in the relationship. Findings Using policy-capturing with undergraduate students at a large university in South Korea, this study showed that AI-based interview has a negative effect on intentions to apply, where AI-based initial screening has no effect. These results suggest that applicants may have a negative feeling of AI-based interview, but they may not AI-based initial screening. In other words, AI-based interview can reduce application rates, but AI-based screening not. Results also indicated that the relationship between AI-based initial screening and intentions to apply is moderated by the level of applicant's reliability on technology. Specifically, respondents with high levels of reliability are more likely than those with low levels of reliability to apply for firms using AI-based initial screening. However, the moderating role of reliability was not significant in the relationship between the AI interview and the applying intention. Employing uncertainty reduction theory, this study indicated that the relationship between AI-based selection tools and intentions to apply is dynamic, suggesting that organizations should carefully manage their AI-based selection techniques throughout the recruitment and selection process.

A Study on Major Issues of Artificial Intelligence Using Keyword Analysis of Papers: Focusing on KCI Journals in the Field of Social Science (논문 키워드 분석을 통한 인공지능의 주요 이슈에 관한 고찰 : 사회과학 분야의 KCI 등재학술지를 중심으로)

  • Chung, Do-Bum;You, Hwasun;Mun, Hee Jin
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.1-9
    • /
    • 2022
  • Today, artificial intelligence (AI) has emerged as a key driver of national competitiveness, but it is also causing unexpected side effects in society. This study intends to examine major social issues by collecting papers on AI targeting KCI journals in the field of social science. Therefore, we conducted keyword analysis of papers from 2016 to 2020. As a result of the analysis, the keywords for 'robot' and 'education' appeared the most, and the top six clusters (issues) were derived through the keyword network. The main issues are as follows: the background and/or basic concept of AI, AI education, side effects of AI, legal issues of AI-based creations, intention to use AI products/services, and AI ethics. The results of this study can be used to expand the discussion on the social aspects of AI and to find policy directions at the national level.

A Study on AI-based Composite Supplementary Index for Complementing the Composite Index of Business Indicators (경기종합지수 보완을 위한 AI기반의 합성보조지수 연구)

  • JUNG, NAK HYUN;Taeyeon Oh;Kim, Kang Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.3
    • /
    • pp.363-379
    • /
    • 2023
  • Purpose: The main objective of this research is to construct an AI-based Composite Supplementary Index (ACSI) model to achieve accurate predictions of the Composite Index of Business Indicators. By incorporating various economic indicators as independent variables, the ACSI model enables the prediction and analysis of both the leading index (CLI) and coincident index (CCI). Methods: This study proposes an AI-based Composite Supplementary Index (ACSI) model that leverages diverse economic indicators as independent variables to forecast leading and coincident economic indicators. To evaluate the model's performance, advanced machine learning techniques including MLP, RNN, LSTM, and GRU were employed. Furthermore, the study explores the potential of employing deep learning models to train the weights associated with the independent variables that constitute the composite supplementary index. Results: The experimental results demonstrate the superior accuracy of the proposed composite supple- mentary index model in predicting leading and coincident economic indicators. Consequently, this model proves to be highly effective in forecasting economic cycles. Conclusion: In conclusion, the developed AI-based Composite Supplementary Index (ACSI) model successfully predicts the Composite Index of Business Indicators. Apart from its utility in management, economics, and investment domains, this model serves as a valuable indicator supporting policy-making and decision-making processes related to the economy.

Application Strategies of Superintelligent AI in the Defense Sector: Emphasizing the Exploration of New Domains and Centralizing Combat Scenario Modeling (초거대 인공지능의 국방 분야 적용방안: 새로운 영역 발굴 및 전투시나리오 모델링을 중심으로)

  • PARK GUNWOO
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.19-24
    • /
    • 2024
  • The future military combat environment is rapidly expanding the role and importance of artificial intelligence (AI) in defense, aligning with the current trends of declining military populations and evolving dynamics. Particularly, in the civilian sector, AI development has surged into new domains based on foundation models, such as OpenAI's Chat-GPT, categorized as Super-Giant AI or Hyperscale AI. The U.S. Department of Defense has organized Task Force Lima under the Chief Digital and AI Office (CDAO) to conduct research on the application of Large Language Models (LLM) and generative AI. Advanced military nations like China and Israel are also actively researching the integration of Super-Giant AI into their military capabilities. Consequently, there is a growing need for research within our military regarding the potential applications and fields of application for Super-Giant AI in weapon systems. In this paper, we compare the characteristics and pros and cons of specialized AI and Super-Giant AI (Foundation Models) and explore new application areas for Super-Giant AI in weapon systems. Anticipating future application areas and potential challenges, this research aims to provide insights into effectively integrating Super-Giant Artificial Intelligence into defense operations. It is expected to contribute to the development of military capabilities, policy formulation, and international security strategies in the era of advanced artificial intelligence.

A Study on the Possibility of Utilizing Artificial Intelligence for National Crisis Management: Focusing on the Management of Artificial Intelligence and R&D Cases (국가위기관리를 위한 인공지능 활용 가능성에 관한 고찰: 인공지능 운용과 연구개발 사례를 중심으로)

  • Choi, Won-sang
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.81-88
    • /
    • 2021
  • Modern society is exposed to various types of crises. In particular, since the September 11 attacks, each country has been increasingly responsible for managing non-military crises. Therefore, the purpose of this study is to consider ways to utilize artificial intelligence(AI) for national crisis management in the era of the fourth industrial revolution. To this end, we analyzed the effectiveness of artificial intelligence(AI) operated and under research and development(R&D) to support human decision-making and examined the possibility of using artificial intelligence(AI) to national crisis management. As a result of the study, artificial intelligence(AI) provides objective judgment of the data-based situation and optimal countermeasures to policymakers, enabling them to make decisions in urgent crisis situations, indicating that it is efficient to use artificial intelligence(AI) for national crisis. These findings suggest the possibility of using artificial intelligence(AI) to respond quickly and efficiently to the national crisis.

Legal Issues and Regulatory Discussions in Generative AI (생성형 AI의 법적 문제와 규제 논의 동향)

  • Kim, Beop-Yeon
    • Informatization Policy
    • /
    • v.31 no.3
    • /
    • pp.3-33
    • /
    • 2024
  • This paper summarizes the legal problems and issues raised in relation to generative AI. In addition, we looked at what regulatory discussions individual countries or international organizations have in order to solve or respond to these issues or to minimize the risks posed by generative AI. Infringement of individual basic rights raised by generative AI, the emergence and control of new crimes, monopolization of specific markets and environmental issues are mainly discussed, and although there are some differences in the necessity and direction of regulation, most countries seem to have similar views. Regarding AI, the issues that are currently being raised have been discussed continuously from the beginning of its appearance. Although certain issues have been discussed relatively much, there are some differences between countries, and situations that require consideration of phenomena different from the past are emerging. It seems that regulations and policies are being refined according to the situation of individual countries. In a situation where various issues are rapidly emerging and changing, measures to minimize the risk of AI and to enjoy the utility and benefits of AI through the use of safe AI should be sought. It will be necessary to continuously identify and analyze international trends and reorganize AI-related regulations and detailed policies suitable for Korea.

A Case Study on Quality Improvement of Electric Vehicle Hairpin Winding Motor Using Deep Learning AI Solution (딥러닝 AI 솔루션을 활용한 전기자동차 헤어핀 권선 모터의 용접 품질향상에 관한 사례연구)

  • Lee, Seungzoon;Sim, Jinsup;Choi, Jeongil
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.283-296
    • /
    • 2023
  • Purpose: The purpose of this study is to actually implement and verify whether welding defects can be detected in real time by utilizing deep learning AI solutions in the welding process of electric vehicle hairpin winding motors. Methods: AI's function and technological elements using synthetic neural network were applied to existing electric vehicle hairpin winding motor laser welding process by making special hardware for detecting electric vehicle hairpin motor laser welding defect. Results: As a result of the test applied to the welding process of the electric vehicle hairpin winding motor, it was confirmed that defects in the welding part were detected in real time. The accuracy of detection of welds was achieved at 0.99 based on mAP@95, and the accuracy of detection of defective parts was 1.18 based on FB-Score 1.5, which fell short of the target, so it will be supplemented by introducing additional lighting and camera settings and enhancement techniques in the future. Conclusion: This study is significant in that it improves the welding quality of hairpin winding motors of electric vehicles by applying domestic artificial intelligence solutions to laser welding operations of hairpin winding motors of electric vehicles. Defects of a manufacturing line can be corrected immediately through automatic welding inspection after laser welding of an electric vehicle hairpin winding motor, thus reducing waste throughput caused by welding failure in the final stage, reducing input costs and increasing product production.

A Study on the Militarization of Artificial Intelligence Technology in North Korea and the Development Direction of Corresponding Weapon System in South Korea (북한 인공지능 기술의 군사화와 우리 군의 대응 무기체계 발전방향 연구)

  • Kim, Min-Hyuk
    • Journal of Information Technology Services
    • /
    • v.20 no.1
    • /
    • pp.29-40
    • /
    • 2021
  • North Korea's science and technology policies are being pursued under strong leadership and control by the central government. In particular, a large part of the research and development of science and technology related to the Fourth Industrial Revolution in North Korea is controlled and absorbed by the defense organizations under the national defense-oriented policy framework, among which North Korea is making national efforts to develop advanced technologies in artificial intelligence and actively utilize them in the military affairs. The future weapon system based on AI will have superior performance and destructive power that is different from modern weapons systems, which is likely to change the paradigm of the future battlefield, so a thorough analysis and prediction of the level of AI militarization technology, the direction of development, and AI-based weapons system in North Korea is needed. In addition, research and development of South Korea's corresponding weapon systems and military science and technology are strongly required as soon as possible. Therefore, in this paper, we will analyze the level of AI technology, the direction of AI militarization, and the AI-based weapons system in North Korea, and discuss the AI military technology and corresponding weapon systems that South Korea military must research and develop to counter the North Korea's. The next study will discuss the analysis of AI militarization technologies not only in North Korea but also in neighboring countries in Northeast Asia such as China and Russia, as well as AI weapon systems by battlefield function, detailed core technologies, and research and development measures.

A Study on AI-Enabled Combat Cases of Ukrainian Armed Forces in the RMA (Revolution in Military Affairs) Aspect (군사혁신(RMA) 측면에서 바라본 우크라이나군의 지능화 전투사례 연구)

  • Sang Keun Cho;Andrii Zhytko;Ki Won Kim;In Keun Son;Sang Hyuk Park
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.308-315
    • /
    • 2023
  • Russia invaded Ukraine in February 2022. Many military experts predicted that Russia could defeat Ukraine within a week, but the Ukraine-Russia War has not been going as expected. Indeed, Ukraine military has been defending well and seems to fight more efficiently than Russian military. There are many reasons for this unexpected situation and one apparent thing is due to artificial intelligence (AI) technologies. This study focused on AI-enabled combats that the Armed Forces of Ukraine has carried out around Siverskyi Donets River, the Crimean Peninsula, and suburbs of Kyiv. For more systematic analysis, the revolution in military affairs (RMA) theory was applied. There are four significant implications inferred by studying current Ukraine-Russia War. First, AI technologies are effective even in the current status and seems to be more influential. Second, hyper-connected network by satellite communications must be needed to enhance the AI weapon effects. Third, military AI technologies should be based on the civil-military cooperation to keep up with pace of technological innovation. Fourth, AI ethics in military should be seriously considered and established in the use of AI technologies. We expect that this study could help ROK Armed Forces to be modernized in the revolutionary fashion, especially for manned and unmanned teaming (MUM-T) system.