• Title/Summary/Keyword: AI model

Search Result 1,364, Processing Time 0.025 seconds

Clinical Validation of a Deep Learning-Based Hybrid (Greulich-Pyle and Modified Tanner-Whitehouse) Method for Bone Age Assessment

  • Kyu-Chong Lee;Kee-Hyoung Lee;Chang Ho Kang;Kyung-Sik Ahn;Lindsey Yoojin Chung;Jae-Joon Lee;Suk Joo Hong;Baek Hyun Kim;Euddeum Shim
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.2017-2025
    • /
    • 2021
  • Objective: To evaluate the accuracy and clinical efficacy of a hybrid Greulich-Pyle (GP) and modified Tanner-Whitehouse (TW) artificial intelligence (AI) model for bone age assessment. Materials and Methods: A deep learning-based model was trained on an open dataset of multiple ethnicities. A total of 102 hand radiographs (51 male and 51 female; mean age ± standard deviation = 10.95 ± 2.37 years) from a single institution were selected for external validation. Three human experts performed bone age assessments based on the GP atlas to develop a reference standard. Two study radiologists performed bone age assessments with and without AI model assistance in two separate sessions, for which the reading time was recorded. The performance of the AI software was assessed by comparing the mean absolute difference between the AI-calculated bone age and the reference standard. The reading time was compared between reading with and without AI using a paired t test. Furthermore, the reliability between the two study radiologists' bone age assessments was assessed using intraclass correlation coefficients (ICCs), and the results were compared between reading with and without AI. Results: The bone ages assessed by the experts and the AI model were not significantly different (11.39 ± 2.74 years and 11.35 ± 2.76 years, respectively, p = 0.31). The mean absolute difference was 0.39 years (95% confidence interval, 0.33-0.45 years) between the automated AI assessment and the reference standard. The mean reading time of the two study radiologists was reduced from 54.29 to 35.37 seconds with AI model assistance (p < 0.001). The ICC of the two study radiologists slightly increased with AI model assistance (from 0.945 to 0.990). Conclusion: The proposed AI model was accurate for assessing bone age. Furthermore, this model appeared to enhance the clinical efficacy by reducing the reading time and improving the inter-observer reliability.

Transforming Text into Video: A Proposed Methodology for Video Production Using the VQGAN-CLIP Image Generative AI Model

  • SukChang Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.225-230
    • /
    • 2023
  • With the development of AI technology, there is a growing discussion about Text-to-Image Generative AI. We presented a Generative AI video production method and delineated a methodology for the production of personalized AI-generated videos with the objective of broadening the landscape of the video domain. And we meticulously examined the procedural steps involved in AI-driven video production and directly implemented a video creation approach utilizing the VQGAN-CLIP model. The outcomes produced by the VQGAN-CLIP model exhibited a relatively moderate resolution and frame rate, and predominantly manifested as abstract images. Such characteristics indicated potential applicability in OTT-based video content or the realm of visual arts. It is anticipated that AI-driven video production techniques will see heightened utilization in forthcoming endeavors.

A Study on the Understanding and Solving Tasks of AI Convergence Education (AI 융합교육의 이해와 해결 과제에 대한 고찰)

  • Sook-Young Choi
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.147-157
    • /
    • 2023
  • In this study, we approached from the perspective of AI convergence education in elementary, middle and high schools to understand AI convergence education. We examined what capabilities AI convergence education ultimately seeks to pursue, and analyzed various examples of AI convergence education in three dimensions: core curriculum, convergence model, AI learning elements and learning activities. In addition, factors to be considered in order for AI convergence education to be actively carried out include the cultivation of AI convergence education capabilities of teachers, the development and dissemination of AI teaching and learning methods and teaching and learning models, and evaluation methods for AI convergence education.

An Investigation Into the Effects of AI-Based Chemistry I Class Using Classification Models (분류 모델을 활용한 AI 기반 화학 I 수업의 효과에 대한 연구)

  • Heesun Yang;Seonghyeok Ahn;Seung-Hyun Kim;Seong-Joo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.160-175
    • /
    • 2024
  • The purpose of this study is to examine the effects of a Chemistry I class based on an artificial intelligence (AI) classification model. To achieve this, the research investigated the development and application of a class utilizing an AI classification model in Chemistry I classes conducted at D High School in Gyeongbuk during the first semester of 2023. After selecting the curriculum content and AI tools, and determining the curriculum-AI integration education model as well as AI hardware and software, we developed detailed activities for the program and applied them in actual classes. Following the implementation of the classes, it was confirmed that students' self-efficacy improved in three aspects: chemistry concept formation, AI value perception, and AI-based maker competency. Specifically, the chemistry classes based on text and image classification models had a positive impact on students' self-efficacy for chemistry concept formation, enhanced students' perception of AI value and interest, and contributed to improving students' AI and physical computing abilities. These results demonstrate the positive impact of the Chemistry I class based on an AI classification model on students, providing evidence of its utility in educational settings.

A Study on AI-based Composite Supplementary Index for Complementing the Composite Index of Business Indicators (경기종합지수 보완을 위한 AI기반의 합성보조지수 연구)

  • JUNG, NAK HYUN;Taeyeon Oh;Kim, Kang Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.3
    • /
    • pp.363-379
    • /
    • 2023
  • Purpose: The main objective of this research is to construct an AI-based Composite Supplementary Index (ACSI) model to achieve accurate predictions of the Composite Index of Business Indicators. By incorporating various economic indicators as independent variables, the ACSI model enables the prediction and analysis of both the leading index (CLI) and coincident index (CCI). Methods: This study proposes an AI-based Composite Supplementary Index (ACSI) model that leverages diverse economic indicators as independent variables to forecast leading and coincident economic indicators. To evaluate the model's performance, advanced machine learning techniques including MLP, RNN, LSTM, and GRU were employed. Furthermore, the study explores the potential of employing deep learning models to train the weights associated with the independent variables that constitute the composite supplementary index. Results: The experimental results demonstrate the superior accuracy of the proposed composite supple- mentary index model in predicting leading and coincident economic indicators. Consequently, this model proves to be highly effective in forecasting economic cycles. Conclusion: In conclusion, the developed AI-based Composite Supplementary Index (ACSI) model successfully predicts the Composite Index of Business Indicators. Apart from its utility in management, economics, and investment domains, this model serves as a valuable indicator supporting policy-making and decision-making processes related to the economy.

Analysis of the Security Requirements of the Chatbot Service Implementation Model (챗봇서비스 구현 모델의 보안요구사항 분석)

  • Kyu-min Cho;Jae-il Lee;Dong-kyoo Shin
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.167-176
    • /
    • 2024
  • Chatbot services are used in various fields in connection with AI services. Security research on AI is also in its infancy, but research on practical security in the service implementation stage using it is more insufficient. This paper analyzes the security requirements for chatbot services linked to AI services. First, the paper analyzes the recently published papers and articles on AI security. A general implementation model is established by investigating chatbot services provided in the market. The implementation model includes five components including a chatbot management system and an AI engine Based on the established model, the protection assets and threats specialized in Chatbot services are summarized. Threats are organized around threats specialized in chatbot services through a survey of chatbot service managers in operation. Ten major threats were drawn. It derived the necessary security areas to cope with the organized threats and analyzed the necessary security requirements for each area. This will be used as a security evaluation criterion in the process of reviewing and improving the security level of chatbot service.

Understanding Elementary School Teachers' Intention to Use Artificial Intelligence in Mathematics Lesson Using TPACK and Technology Acceptance Model (TPACK과 기술수용모델을 활용한 초등교사의 수학 수업에서 인공지능 사용 의도 이해)

  • Son, Taekwon;Goo, Jongseo;Ahn, Doyeon
    • Education of Primary School Mathematics
    • /
    • v.26 no.3
    • /
    • pp.163-180
    • /
    • 2023
  • This study aimed to investigate the factors influencing the intentions of elementary school teachers to use artificial intelligence (AI) in mathematics lessons and to identify the essential prerequisites for the effective implementation of AI in mathematics education. To achieve this purpose, we examined the structural relationship between elementary school teachers' TPACK(Technological Pedagogical Content Knowledge) and the TAM(Technology Acceptance Model) using structural equation model. The findings of the study indicated that elementary school teachers' TPACK regarding the use of AI in mathematics instruction had a direct and significant impact on their perceived ease of use and perceived usefulness of AI. In other words, when teachers possessed a higher level of TPACK competency in utilizing AI in mathematics classes, they found it easier to incorporate AI technology and recognized it as a valuable tool to enhance students' mathematics learning experience. In addition, perceived ease of use and perceived usefulness directly influenced the attitudes of elementary school teachers towards the integration of AI in mathematics education. When teachers perceived AI as easy to use in their mathematics lessons, they were more likely to recognize its usefulness and develop a positive attitude towards its application in the classroom. Perceived ease of use, perceived usefulness, and attitude towards AI integration in mathematics classes had a direct impact on the intentions of elementary school teachers to use AI in their mathematics instruction. As teachers perceived AI as easy to use, valuable, and developed a positive attitude towards its incorporation, their intention to utilize AI in mathematics education increased. In conclusion, this study shed light on the factors influencing elementary school teachers' intentions to use AI in mathematics classes. It revealed that teachers' TPACK plays a crucial role in facilitating the integration of AI in mathematics education. Additionally, the study emphasized the significance of enhancing teachers' awareness of the advantages and convenience of using AI in mathematics instruction to foster positive attitudes and intentions towards its implementation. By understanding these factors, educational stakeholders can develop strategies to effectively promote the utilization of AI in mathematics education, ultimately enhancing students' learning outcomes.

A Study on Robustness Evaluation and Improvement of AI Model for Malware Variation Analysis (악성코드 변종 분석을 위한 AI 모델의 Robust 수준 측정 및 개선 연구)

  • Lee, Eun-gyu;Jeong, Si-on;Lee, Hyun-woo;Lee, Tea-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.997-1008
    • /
    • 2022
  • Today, AI(Artificial Intelligence) technology is being extensively researched in various fields, including the field of malware detection. To introduce AI systems into roles that protect important decisions and resources, it must be a reliable AI model. AI model that dependent on training dataset should be verified to be robust against new attacks. Rather than generating new malware detection, attackers find malware detection that succeed in attacking by mass-producing strains of previously detected malware detection. Most of the attacks, such as adversarial attacks, that lead to misclassification of AI models, are made by slightly modifying past attacks. Robust models that can be defended against these variants is needed, and the Robustness level of the model cannot be evaluated with accuracy and recall, which are widely used as AI evaluation indicators. In this paper, we experiment a framework to evaluate robustness level by generating an adversarial sample based on one of the adversarial attacks, C&W attack, and to improve robustness level through adversarial training. Through experiments based on malware dataset in this study, the limitations and possibilities of the proposed method in the field of malware detection were confirmed.

A Research on AI Generated 2D Image to 3D Modeling Technology

  • Ke Ma;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.81-86
    • /
    • 2024
  • Advancements in generative AI are reshaping graphic and 3D content design landscapes, where AI not only enriches graphic design but extends its reach to 3D content creation. Though 3D texture mapping through AI is advancing, AI-generated 3D modeling technology in this realm remains nascent. This paper presents AI 2D image-driven 3D modeling techniques, assessing their viability in 3D content design by scrutinizing various algorithms. Initially, four OBJ model-exporting AI algorithms are screened, and two are further evaluated. Results indicate that while AI-generated 3D models may not be directly usable, they effectively capture reference object structures, offering substantial time savings and enhanced design efficiency through manual refinements. This endeavor pioneers new avenues for 3D content creators, anticipating a dynamic fusion of AI and 3D design.

Experience Way of Artificial Intelligence PLAY Educational Model for Elementary School Students

  • Lee, Kibbm;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.232-237
    • /
    • 2020
  • Given the recent pace of development and expansion of Artificial Intelligence (AI) technology, the influence and ripple effects of AI technology on the whole of our lives will be very large and spread rapidly. The National Artificial Intelligence R&D Strategy, published in 2019, emphasizes the importance of artificial intelligence education for K-12 students. It also mentions STEM education, AI convergence curriculum, and budget for supporting the development of teaching materials and tools. However, it is necessary to create a new type of curriculum at a time when artificial intelligence curriculum has never existed before. With many attempts and discussions going very fast in all countries on almost the same starting line. Also, there is no suitable professor for K-12 students, and it is difficult to make K-12 students understand the concept of AI. In particular, it is difficult to teach elementary school students through professional programming in AI education. It is also difficult to learn tools that can teach AI concepts. In this paper, we propose an educational model for elementary school students to improve their understanding of AI through play or experience. This an experiential education model that combineds exploratory learning and discovery learning using multi-intelligence and the PLAY teaching-learning model to undertand the importance of data training or data required for AI education. This educational model is designed to learn how a computer that knows only binary numbers through UA recognizes images. Through code.org, students were trained to learn AI robots and configured to understand data bias like play. In addition, by learning images directly on a computer through TeachableMachine, a tool capable of supervised learning, to understand the concept of dataset, learning process, and accuracy, and proposed the process of AI inference.