• Title/Summary/Keyword: AI learning data

Search Result 855, Processing Time 0.026 seconds

Application of object detection algorithm for psychological analysis of children's drawing (아동 그림 심리분석을 위한 인공지능 기반 객체 탐지 알고리즘 응용)

  • Yim, Jiyeon;Lee, Seong-Oak;Kim, Kyoung-Pyo;Yu, Yonggyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • Children's drawings are widely used in the diagnosis of children's psychology as a means of expressing inner feelings. This paper proposes a children's drawings-based object detection algorithm applicable to children's psychology analysis. First, the sketch area from the picture was extracted and the data labeling process was also performed. Then, we trained and evaluated a Faster R-CNN based object detection model using the labeled datasets. Based on the detection results, information about the drawing's area, position, or color histogram is calculated to analyze primitive information about the drawings quickly and easily. The results of this paper show that Artificial Intelligence-based object detection algorithms were helpful in terms of psychological analysis using children's drawings.

Effects of CEO's Self-Determination on Start-up Entrepreneurship and Business Performance in Service and Distribution SMEs

  • SHIN, Hyang-Sook;BAE, Jee-Eun
    • The Korean Journal of Franchise Management
    • /
    • v.11 no.4
    • /
    • pp.31-44
    • /
    • 2020
  • Purpose: The purpose of this study is to examine the effects of CEO's self-determination on entrepreneurship, business performance (operational and financial performance). Also, this research provide some strategic insights for improving business performance. In the proposed model, self-determination consists of autonomy, competence, and relatedness, and entrepreneurship consists of innovation, initiative and risk sensitivity, and proactiveness. More specifically, this study proposes a framework that entrepreneurship and operational performance will play mediating roles between self-determination and financial performance. Research design, data, methodology: In this study, an online survey was conducted on SME CEOs for analysis, and a total of 122 samples were used. In the analysis process for hypothesis verification and evaluation, frequency analysis was first performed to identify the demographic characteristics of the respondents, and confirmatory factor analysis was conducted to assess the reliability and validity of the measurement model. In addition, a structural model analysis was conducted to examine the structural relationships between CEO's self-determination, entrepreneurship, and business performance (operational and financial performance) using SmartPLS 3.0. Results: The findings and summary are as follows. First, the autonomy of self-determination has a positive effect on entrepreneurship. Second, the competence of self-determination affects entrepreneurship and operational performance. Third, it affects the innovation, initiative and risk sensitivity of the CEO's entrepreneurship, and ultimately, its operational performance. The results show that the business performance of Start-up also increases when self-determination can be a factor in increasing entrepreneurship in three sub-dimensionalities. Conclusions: The conclusion of this study is that in order for SMEs to develop into a sustainable company by securing competitiveness after start-up, external motivation such as external help and support from the state (local government) is important, but competence and relationship, which are components of self-determination. The intrinsic motivation of the CEO may be more important. To this end, CEO's should prioritize learning for competency development, and the government should pay attention to providing various educational programs through establishment of education policies and education systems to enhance the competency of start-up CEO's.

A Study on the Factors Affecting the Intention of Continuous Use of Intelligent Government Administrative Services (지능형 정부 행정서비스 지속사용의도에 영향을 미치는 요인에 대한 연구)

  • Lee, Se-Ho;Han, Seung-jo;Park, Kyung-Hye
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.85-93
    • /
    • 2021
  • The government is pursuing plans to create new e-government services. In terms of improving business procedures, dBrain (finance), e-people (personnel), and Onnara (electronic payment and business management) have achieved considerable results, and are currently making efforts to improve existing administrative services using newly emerged ICT. Among them, this paper attempted to study whether self-learning-based intelligent administrative services are efficient in the work process of public officials promoting actual work and affect their continued use. Based on individual perceptions and attitudes toward advanced ICTs such as AI, big data, and blockchain, public officials' influences on administrative services were identified and verified using UTAUT variables. They believe that the establishment and introduction of innovative administrative services can be used more efficiently, and they have high expectations for the use and provision of services as ICT develops. In the future, a model will be also applied to citizens

Ensemble-based deep learning for autonomous bridge component and damage segmentation leveraging Nested Reg-UNet

  • Abhishek Subedi;Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Mohammad R. Jahanshahi
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.335-349
    • /
    • 2023
  • Bridges constantly undergo deterioration and damage, the most common ones being concrete damage and exposed rebar. Periodic inspection of bridges to identify damages can aid in their quick remediation. Likewise, identifying components can provide context for damage assessment and help gauge a bridge's state of interaction with its surroundings. Current inspection techniques rely on manual site visits, which can be time-consuming and costly. More recently, robotic inspection assisted by autonomous data analytics based on Computer Vision (CV) and Artificial Intelligence (AI) has been viewed as a suitable alternative to manual inspection because of its efficiency and accuracy. To aid research in this avenue, this study performs a comparative assessment of different architectures, loss functions, and ensembling strategies for the autonomous segmentation of bridge components and damages. The experiments lead to several interesting discoveries. Nested Reg-UNet architecture is found to outperform five other state-of-the-art architectures in both damage and component segmentation tasks. The architecture is built by combining a Nested UNet style dense configuration with a pretrained RegNet encoder. In terms of the mean Intersection over Union (mIoU) metric, the Nested Reg-UNet architecture provides an improvement of 2.86% on the damage segmentation task and 1.66% on the component segmentation task compared to the state-of-the-art UNet architecture. Furthermore, it is demonstrated that incorporating the Lovasz-Softmax loss function to counter class imbalance can boost performance by 3.44% in the component segmentation task over the most employed alternative, weighted Cross Entropy (wCE). Finally, weighted softmax ensembling is found to be quite effective when used synchronously with the Nested Reg-UNet architecture by providing mIoU improvement of 0.74% in the component segmentation task and 1.14% in the damage segmentation task over a single-architecture baseline. Overall, the best mIoU of 92.50% for the component segmentation task and 84.19% for the damage segmentation task validate the feasibility of these techniques for autonomous bridge component and damage segmentation using RGB images.

A study on the Improvement of the Food Waste Discharge System through the Classification on Foreign Substances (이물질 구별을 통한 음식물쓰레기 배출시스템 개선에 관한 연구)

  • Kim, Yongil;Kim, Seungcheon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.51-56
    • /
    • 2022
  • With the development of industrialization, the amount of food and waste is rapidly increasing. Accordingly, the government is aware of the seriousness and is making efforts in various ways to reduce it. As a part of that, the volume-based food system was introduced, and although there were several trials and errors at the beginning of the introduction, it shows a reduction effect of 20 to 30%. These results suggest that the volume-based food system is being established. However, the waste is caused by foreign substances in the process of recycling resources by collecting them from the 1st collection to the 2nd collection process. Therefore, in this study, to solve these problems fundamentally, artificial intelligence is applied to classify foreign substances and improve them. Due to the nature of food waste, there is a limit to obtaining many images, so we compare several models based on CNNs and classify them as abnormal data, that is, CNN-based models are trained on various types of foreign substances, and then models with high accuracy are selected. We intend to prepare improvement measures for maintenance, such as manpower input to protect equipment and classify foreign substances by applying it.

A Research on Image Metadata Extraction through YCrCb Color Model Analysis for Media Hyper-personalization Recommendation (미디어 초개인화 추천을 위한 YCrCb 컬러 모델 분석을 통한 영상의 메타데이터 추출에 대한 연구)

  • Park, Hyo-Gyeong;Yong, Sung-Jung;You, Yeon-Hwi;Moon, Il-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.277-280
    • /
    • 2021
  • Recently as various contents are mass produced based on high accessibility, the media contents market is more active. Users want to find content that suits their taste, and each platform is competing for personalized recommendations for content. For an efficient recommendation system, high-quality metadata is required. Existing platforms take a method in which the user directly inputs the metadata of an image. This will waste time and money processing large amounts of data. In this paper, for media hyperpersonalization recommendation, keyframes are extracted based on the YCrCb color model of the video based on movie trailers, movie genres are distinguished through supervised learning of artificial intelligence and In the future, we would like to propose a utilization plan for generating metadata.

  • PDF

Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models (1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발)

  • Lee, Joonhak;Lee, Haneul;Kang, Narae;Hwang, Seokhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.311-323
    • /
    • 2023
  • In order to reduce disaster damage by localized heavy rains, floods, and urban inundation, it is important to know in advance whether natural disasters occur. Currently, heavy rain watch and heavy rain warning by the criteria of the Korea Meteorological Administration are being issued in Korea. However, since this one criterion is applied to the whole country, we can not clearly recognize heavy rain damage for a specific region in advance. Therefore, in this paper, we tried to reset the current criteria for a special weather report which considers the regional characteristics and to predict the damage caused by rainfall after 1 hour. The study area was selected as Gyeonggi-province, where has more frequent heavy rain damage than other regions. Then, the rainfall inducing disaster or hazard-triggering rainfall was set by utilizing hourly rainfall and heavy rain damage data, considering the local characteristics. The heavy rain damage prediction model was developed by a decision tree model and a random forest model, which are machine learning technique and by rainfall inducing disaster and rainfall data. In addition, long short-term memory and deep neural network models were used for predicting rainfall after 1 hour. The predicted rainfall by a developed prediction model was applied to the trained classification model and we predicted whether the rain damage after 1 hour will be occurred or not and we called this as 1ST-Model. The 1ST-Model can be used for preventing and preparing heavy rain disaster and it is judged to be of great contribution in reducing damage caused by heavy rain.

Deep Learning-based Fracture Mode Determination in Composite Laminates (복합 적층판의 딥러닝 기반 파괴 모드 결정)

  • Muhammad Muzammil Azad;Atta Ur Rehman Shah;M.N. Prabhakar;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2024
  • This study focuses on the determination of the fracture mode in composite laminates using deep learning. With the increase in the use of laminated composites in numerous engineering applications, the insurance of their integrity and performance is of paramount importance. However, owing to the complex nature of these materials, the identification of fracture modes is often a tedious and time-consuming task that requires critical domain knowledge. Therefore, to alleviate these issues, this study aims to utilize modern artificial intelligence technology to automate the fractographic analysis of laminated composites. To accomplish this goal, scanning electron microscopy (SEM) images of fractured tensile test specimens are obtained from laminated composites to showcase various fracture modes. These SEM images are then categorized based on numerous fracture modes, including fiber breakage, fiber pull-out, mix-mode fracture, matrix brittle fracture, and matrix ductile fracture. Next, the collective data for all classes are divided into train, test, and validation datasets. Two state-of-the-art, deep learning-based pre-trained models, namely, DenseNet and GoogleNet, are trained to learn the discriminative features for each fracture mode. The DenseNet models shows training and testing accuracies of 94.01% and 75.49%, respectively, whereas those of the GoogleNet model are 84.55% and 54.48%, respectively. The trained deep learning models are then validated on unseen validation datasets. This validation demonstrates that the DenseNet model, owing to its deeper architecture, can extract high-quality features, resulting in 84.44% validation accuracy. This value is 36.84% higher than that of the GoogleNet model. Hence, these results affirm that the DenseNet model is effective in performing fractographic analyses of laminated composites by predicting fracture modes with high precision.

Research-platform Design for the Korean Smart Greenhouse Based on Cloud Computing (클라우드 기반 한국형 스마트 온실 연구 플랫폼 설계 방안)

  • Baek, Jeong-Hyun;Heo, Jeong-Wook;Kim, Hyun-Hwan;Hong, Youngsin;Lee, Jae-Su
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • This study was performed to review the domestic and international smart farm service model based on the convergence of agriculture and information & communication technology and derived various factors needed to improve the Korean smart greenhouse. Studies on modelling of crop growth environment in domestic smart farms were limited. And it took a lot of time to build research infrastructure. The cloud-based research platform as an alternative is needed. This platform can provide an infrastructure for comprehensive data storage and analysis as it manages the growth model of cloud-based integrated data, growth environment model, actuators control model, and farm management as well as knowledge-based expert systems and farm dashboard. Therefore, the cloud-based research platform can be applied as to quantify the relationships among various factors, such as the growth environment of crops, productivity, and actuators control. In addition, it will enable researchers to analyze quantitatively the growth environment model of crops, plants, and growth by utilizing big data, machine learning, and artificial intelligences.

Consistency of 1-day and 3-day average dietary intake and the relationship of dietary intake with blood glucose, hbA1c, BMI, and lipids in patients with type 2 diabetes (제2형 당뇨병 환자의 1일과 3일 평균 식이섭취량의 일관성과 혈당, 당화혈색소, 체질량지수, 지질과의 관련성)

  • DaeEun, Lee;Haejung, Lee;Sangeun, Lee; MinJin, Lee;Ah Reum, Khang
    • Journal of Korean Biological Nursing Science
    • /
    • v.25 no.1
    • /
    • pp.20-31
    • /
    • 2023
  • Purpose: This study aimed to determine the consistency of 1-day and 3-day average dietary intake using the 24-hour diet recall method and to investigate the relationship of diet intake with physiological indicators potentially associated with diabetic complications in patients with diabetes. Methods: This study conducted a secondary data analysis using pretest data of a nursing intervention study entitled "Development of deep learning based AI coaching program for diabetic patients with high risk and examination of its effects." Data were analyzed through descriptive analysis, one-way repeated-measures analysis of variance, and Pearson correlation coefficients using SPSS 26.0. Results: The average total daily calorie intake over 3 days was 1,494.48 ± 436.47 kcal/day: 1,510.90 ± 547.76 kcal/day on the first day, 1,414.22 ± 527.58 kcal/day on the second day, 1,558.34 ± 645.83 kcal/ day on the third day, showing significant differences (F = 3.59, p = .031). The correlation coefficient between the 1-day and 3-day average dietary intake was 0.41-0.77 for each nutrient and 0.62-0.80 for each food group. Vegetable intake showed negative correlations with body mass index (BMI; r = -.19, p = .023) and triglycerides (r = -.18, p = .036), whereas dairy intake was positively associated with low-density lipoprotein-cholesterol (LDL; r = -0.18, p = .034) and triglycerides (r = .40, p<.001). Conclusion: This study demonstrated that 1-day dietary intake was highly correlated with 3-day average dietary intake using the 24-hour diet recall method. Food groups showed significant associations with physiological indicators of potential diabetic complications such as BMI, triglycerides, and LDL levels. Further studies are needed to improve the knowledge base on the relationships between physiological indicators and food groups.