• Title/Summary/Keyword: AI in diagnostic medical imaging

Search Result 14, Processing Time 0.028 seconds

Artificial Intelligence in Gastric Cancer Imaging With Emphasis on Diagnostic Imaging and Body Morphometry

  • Kyung Won Kim;Jimi Huh ;Bushra Urooj ;Jeongjin Lee ;Jinseok Lee ;In-Seob Lee ;Hyesun Park ;Seongwon Na ;Yousun Ko
    • Journal of Gastric Cancer
    • /
    • v.23 no.3
    • /
    • pp.388-399
    • /
    • 2023
  • Gastric cancer remains a significant global health concern, coercing the need for advancements in imaging techniques for ensuring accurate diagnosis and effective treatment planning. Artificial intelligence (AI) has emerged as a potent tool for gastric-cancer imaging, particularly for diagnostic imaging and body morphometry. This review article offers a comprehensive overview of the recent developments and applications of AI in gastric cancer imaging. We investigated the role of AI imaging in gastric cancer diagnosis and staging, showcasing its potential to enhance the accuracy and efficiency of these crucial aspects of patient management. Additionally, we explored the application of AI body morphometry specifically for assessing the clinical impact of gastrectomy. This aspect of AI utilization holds significant promise for understanding postoperative changes and optimizing patient outcomes. Furthermore, we examine the current state of AI techniques for the prognosis of patients with gastric cancer. These prognostic models leverage AI algorithms to predict long-term survival outcomes and assist clinicians in making informed treatment decisions. However, the implementation of AI techniques for gastric cancer imaging has several limitations. As AI continues to evolve, we hope to witness the translation of cutting-edge technologies into routine clinical practice, ultimately improving patient care and outcomes in the fight against gastric cancer.

Position Statements of the Emerging Trends Committee of the Asian Oceanian Society of Radiology on the Adoption and Implementation of Artificial Intelligence for Radiology

  • Nicole Kessa Wee;Kim-Ann Git;Wen-Jeng Lee;Gaurang Raval;Aziz Pattokhov;Evelyn Lai Ming Ho;Chamaree Chuapetcharasopon;Noriyuki Tomiyama;Kwan Hoong Ng;Cher Heng Tan
    • Korean Journal of Radiology
    • /
    • v.25 no.7
    • /
    • pp.603-612
    • /
    • 2024
  • Artificial intelligence (AI) is rapidly gaining recognition in the radiology domain as a greater number of radiologists are becoming AI-literate. However, the adoption and implementation of AI solutions in clinical settings have been slow, with points of contention. A group of AI users comprising mainly clinical radiologists across various Asian countries, including India, Japan, Malaysia, Singapore, Taiwan, Thailand, and Uzbekistan, formed the working group. This study aimed to draft position statements regarding the application and clinical deployment of AI in radiology. The primary aim is to raise awareness among the general public, promote professional interest and discussion, clarify ethical considerations when implementing AI technology, and engage the radiology profession in the ever-changing clinical practice. These position statements highlight pertinent issues that need to be addressed between care providers and care recipients. More importantly, this will help legalize the use of non-human instruments in clinical deployment without compromising ethical considerations, decision-making precision, and clinical professional standards. We base our study on four main principles of medical care-respect for patient autonomy, beneficence, non-maleficence, and justice.

A review of Explainable AI Techniques in Medical Imaging (의료영상 분야를 위한 설명가능한 인공지능 기술 리뷰)

  • Lee, DongEon;Park, ChunSu;Kang, Jeong-Woon;Kim, MinWoo
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.259-270
    • /
    • 2022
  • Artificial intelligence (AI) has been studied in various fields of medical imaging. Currently, top-notch deep learning (DL) techniques have led to high diagnostic accuracy and fast computation. However, they are rarely used in real clinical practices because of a lack of reliability concerning their results. Most DL models can achieve high performance by extracting features from large volumes of data. However, increasing model complexity and nonlinearity turn such models into black boxes that are seldom accessible, interpretable, and transparent. As a result, scientific interest in the field of explainable artificial intelligence (XAI) is gradually emerging. This study aims to review diverse XAI approaches currently exploited in medical imaging. We identify the concepts of the methods, introduce studies applying them to imaging modalities such as computational tomography (CT), magnetic resonance imaging (MRI), and endoscopy, and lastly discuss limitations and challenges faced by XAI for future studies.

The Impact of Network Closure and Structural Holes on Research Performance in Collaboration Networks (공동연구 네트워크의 폐쇄와 구조적 공백이 연구성과에 미치는 영향)

  • Nari Lee;Ji-Hong Park
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.3
    • /
    • pp.289-308
    • /
    • 2024
  • This study investigates the collaboration networks in the field of AI-driven diagnostic medical imaging, focusing on the influence of two social capital concepts-network closure and structural holes-on research performance. The analysis reveals a highly fragmented network structure with one dominant component, while individual clusters exhibit strong internal cohesion. Both network closure, measured by density, and structural holes, assessed through efficiency, positively impact research performance, as demonstrated by QAP regression analysis. The findings highlight that, in the integration of AI into diagnostic medical imaging, robust connections among researchers are vital, and the presence of structural holes, which enable the assimilation of diverse knowledge, also significantly enhances research outcomes. This underscores the importance of fostering a well-balanced network to optimize collaboration and knowledge production in this emerging interdisciplinary field.

Feasibility of Three-Dimensional Balanced Steady-State Free Precession Cine Magnetic Resonance Imaging Combined with an Image Denoising Technique to Evaluate Cardiac Function in Children with Repaired Tetralogy of Fallot

  • YaFeng Peng;XinYu Su;LiWei Hu;Qian Wang;RongZhen Ouyang;AiMin Sun;Chen Guo;XiaoFen Yao;Yong Zhang;LiJia Wang;YuMin Zhong
    • Korean Journal of Radiology
    • /
    • v.22 no.9
    • /
    • pp.1525-1536
    • /
    • 2021
  • Objective: To investigate the feasibility of cine three-dimensional (3D) balanced steady-state free precession (b-SSFP) imaging combined with a non-local means (NLM) algorithm for image denoising in evaluating cardiac function in children with repaired tetralogy of Fallot (rTOF). Materials and Methods: Thirty-five patients with rTOF (mean age, 12 years; range, 7-18 years) were enrolled to undergo cardiac cine image acquisition, including two-dimensional (2D) b-SSFP, 3D b-SSFP, and 3D b-SSFP combined with NLM. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) of the two ventricles were measured and indexed by body surface index. Acquisition time and image quality were recorded and compared among the three imaging sequences. Results: 3D b-SSFP with denoising vs. 2D b-SSFP had high correlation coefficients for EDV, ESV, SV, and EF of the left (0.959-0.991; p < 0.001) as well as right (0.755-0.965; p < 0.001) ventricular metrics. The image acquisition time ± standard deviation (SD) was 25.1 ± 2.4 seconds for 3D b-SSFP compared with 277.6 ± 0.7 seconds for 2D b-SSFP, indicating a significantly shorter time with the 3D than the 2D sequence (p < 0.001). Image quality score was better with 3D b-SSFP combined with denoising than with 3D b-SSFP (mean ± SD, 3.8 ± 0.6 vs. 3.5 ± 0.6; p = 0.005). Signal-to-noise ratios for blood and myocardium as well as contrast between blood and myocardium were higher for 3D b-SSFP combined with denoising than for 3D b-SSFP (p < 0.05 for all but septal myocardium). Conclusion: The 3D b-SSFP sequence can significantly reduce acquisition time compared to the 2D b-SSFP sequence for cine imaging in the evaluation of ventricular function in children with rTOF, and its quality can be further improved by combining it with an NLM denoising method.

Imaging Evaluation of Peritoneal Metastasis: Current and Promising Techniques

  • Chen Fu;Bangxing Zhang;Tiankang Guo;Junliang Li
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.86-102
    • /
    • 2024
  • Early diagnosis, accurate assessment, and localization of peritoneal metastasis (PM) are essential for the selection of appropriate treatments and surgical guidance. However, available imaging modalities (computed tomography [CT], conventional magnetic resonance imaging [MRI], and 18fluorodeoxyglucose positron emission tomography [PET]/CT) have limitations. The advent of new imaging techniques and novel molecular imaging agents have revealed molecular processes in the tumor microenvironment as an application for the early diagnosis and assessment of PM as well as real-time guided surgical resection, which has changed clinical management. In contrast to clinical imaging, which is purely qualitative and subjective for interpreting macroscopic structures, radiomics and artificial intelligence (AI) capitalize on high-dimensional numerical data from images that may reflect tumor pathophysiology. A predictive model can be used to predict the occurrence, recurrence, and prognosis of PM, thereby avoiding unnecessary exploratory surgeries. This review summarizes the role and status of different imaging techniques, especially new imaging strategies such as spectral photon-counting CT, fibroblast activation protein inhibitor (FAPI) PET/CT, near-infrared fluorescence imaging, and PET/MRI, for early diagnosis, assessment of surgical indications, and recurrence monitoring in patients with PM. The clinical applications, limitations, and solutions for fluorescence imaging, radiomics, and AI are also discussed.

From Masked Reconstructions to Disease Diagnostics: A Vision Transformer Approach for Fundus Images (마스크된 복원에서 질병 진단까지: 안저 영상을 위한 비전 트랜스포머 접근법)

  • Toan Duc Nguyen;Gyurin Byun;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.557-560
    • /
    • 2023
  • In this paper, we introduce a pre-training method leveraging the capabilities of the Vision Transformer (ViT) for disease diagnosis in conventional Fundus images. Recognizing the need for effective representation learning in medical images, our method combines the Vision Transformer with a Masked Autoencoder to generate meaningful and pertinent image augmentations. During pre-training, the Masked Autoencoder produces an altered version of the original image, which serves as a positive pair. The Vision Transformer then employs contrastive learning techniques with this image pair to refine its weight parameters. Our experiments demonstrate that this dual-model approach harnesses the strengths of both the ViT and the Masked Autoencoder, resulting in robust and clinically relevant feature embeddings. Preliminary results suggest significant improvements in diagnostic accuracy, underscoring the potential of our methodology in enhancing automated disease diagnosis in fundus imaging.

Evaluation of deep learning and convolutional neural network algorithms for mandibular fracture detection using radiographic images: A systematic review and meta-analysis

  • Mahmood Dashti;Sahar Ghaedsharaf;Shohreh Ghasemi;Niusha Zare;Elena-Florentina Constantin;Amir Fahimipour;Neda Tajbakhsh;Niloofar Ghadimi
    • Imaging Science in Dentistry
    • /
    • v.54 no.3
    • /
    • pp.232-239
    • /
    • 2024
  • Purpose: The use of artificial intelligence (AI) and deep learning algorithms in dentistry, especially for processing radiographic images, has markedly increased. However, detailed information remains limited regarding the accuracy of these algorithms in detecting mandibular fractures. Materials and Methods: This meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Specific keywords were generated regarding the accuracy of AI algorithms in detecting mandibular fractures on radiographic images. Then, the PubMed/Medline, Scopus, Embase, and Web of Science databases were searched. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was employed to evaluate potential bias in the selected studies. A pooled analysis of the relevant parameters was conducted using STATA version 17 (StataCorp, College Station, TX, USA), utilizing the metandi command. Results: Of the 49 studies reviewed, 5 met the inclusion criteria. All of the selected studies utilized convolutional neural network algorithms, albeit with varying backbone structures, and all evaluated panoramic radiography images. The pooled analysis yielded a sensitivity of 0.971 (95% confidence interval [CI]: 0.881-0.949), a specificity of 0.813 (95% CI: 0.797-0.824), and a diagnostic odds ratio of 7.109 (95% CI: 5.27-8.913). Conclusion: This review suggests that deep learning algorithms show potential for detecting mandibular fractures on panoramic radiography images. However, their effectiveness is currently limited by the small size and narrow scope of available datasets. Further research with larger and more diverse datasets is crucial to verify the accuracy of these tools in in practical dental settings.

Ethics for Artificial Intelligence: Focus on the Use of Radiology Images (인공지능 의료윤리: 영상의학 영상데이터 활용 관점의 고찰)

  • Seong Ho Park
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.4
    • /
    • pp.759-770
    • /
    • 2022
  • The importance of ethics in research and the use of artificial intelligence (AI) is increasingly recognized not only in the field of healthcare but throughout society. This article intends to provide domestic readers with practical points regarding the ethical issues of using radiological images for AI research, focusing on data security and privacy protection and the right to data. Therefore, this article refers to related domestic laws and government policies. Data security and privacy protection is a key ethical principle for AI, in which proper de-identification of data is crucial. Sharing healthcare data to develop AI in a way that minimizes business interests is another ethical point to be highlighted. The need for data sharing makes the data security and privacy protection even more important as data sharing increases the risk of data breach.

Mobile App for Detecting Canine Skin Diseases Using U-Net Image Segmentation (U-Net 기반 이미지 분할 및 병변 영역 식별을 활용한 반려견 피부질환 검출 모바일 앱)

  • Bo Kyeong Kim;Jae Yeon Byun;Kyung-Ae Cha
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.25-34
    • /
    • 2024
  • This paper presents the development of a mobile application that detects and identifies canine skin diseases by training a deep learning-based U-Net model to infer the presence and location of skin lesions from images. U-Net, primarily used in medical imaging for image segmentation, is effective in distinguishing specific regions of an image in a polygonal form, making it suitable for identifying lesion areas in dogs. In this study, six major canine skin diseases were defined as classes, and the U-Net model was trained to differentiate among them. The model was then implemented in a mobile app, allowing users to perform lesion analysis and prediction through simple camera shots, with the results provided directly to the user. This enables pet owners to monitor the health of their pets and obtain information that aids in early diagnosis. By providing a quick and accurate diagnostic tool for pet health management through deep learning, this study emphasizes the significance of developing an easily accessible service for home use.