• Title/Summary/Keyword: AI in Education

Search Result 810, Processing Time 0.024 seconds

A Study on the Composition of Curriculum for AI Education in Elementary School (초등학교 AI교육을 위한 교육과정 구성 연구)

  • Bae, Youngkwon;Yoo, Inhwan;Yu, Wonjin;Kim, Wooyeol
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.279-288
    • /
    • 2021
  • The interest in artificial intelligence education in education is also high based on recent social interest in artificial intelligence. Accordingly, Korea is preparing a foothold for revitalizing artificial intelligence education in the future, such as announcing an artificial intelligence education plan by expanding from software (SW) education that has become a regular curriculum after the 2015 revised curriculum, and various studies are being conducted. However, research on the curriculum related to what and how to educate in artificial intelligence education is still in its infancy and further research is needed. A look at related research shows many similarities and differences in research related to domestic and foreign AI curriculum, because there are differences in the areas and content elements that each research focuses on. Therefore, in this study, in preparation for the future independence of the information subject and the formalization of AI education, literature studies on domestic and foreign AI curriculum are conducted, and based on this, the direction of the curriculum composition for elementary school AI education is to be explored.

A Study on the development of elementary school SW·AI educational contents linked to the curriculum(camp type) (교육과정과 연계된 초등학교 캠프형 SW·AI교육 콘텐츠 개발에 관한 연구)

  • Pyun, YoungShin;Han, JungSoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.49-54
    • /
    • 2022
  • Rapid changes in modern society after the COVID-19 have highlighted artificial intelligence talent as a major influencing factor in determining national competitiveness. Accordingly, the Ministry of Education planned a large-scale SW·AI camp education project to develop the digital capabilities of 4th to 6th grade elementary school students and middle and high school students who are in a vacuum in artificial intelligence education. Therefore, this study aims to develop a camp-type SW·AI education program for students in grades 4-6 of elementary school so that students in grades 4-6 of elementary school can acquire basic knowledge in artificial intelligence. For this, the meaning of SW·AI education in elementary school is defined and SW·AI contents to be dealt with in elementary school are: understanding of SW AI, 'principle and application of SW AI', and 'social impact of SW AI' was set. In addition, an attempt was made to link the set elements of elementary school SW AI education and learning with related subjects and units of textbooks currently used in elementary schools. As for the program used for education, entry, a software coding learning tool based on block coding, is designed to strengthen software programming basic competency, and all programs are designed to be operated centered on experience and experience-oriented participants in consideration of the developmental characteristics of elementary school students. In order for SW·AI education to be organized and operated as a member of the regular curriculum, it is suggested that research based on the analysis of regular curriculum contents and in-depth analysis of SW·AI education contents is necessary.

A Basic Study on the Development of Artificial Intelligence Education Content Based on Nuri Curriculum (누리교육과정 기반 인공지능교육 콘텐츠 개발에 관한 기초연구)

  • Pyun, Youngshin;Han, Jungsoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.71-76
    • /
    • 2022
  • The innovative development of the 4th industry and the COVID-19 pandemic caused a great change in the education, eventually requiring elementary, middle and high schools, including kindergartens, to implement artificial intelligence(AI) education. However, since early childhood AI education is conducted in the form of results-oriented and special activities, the need for research on what early childhood AI education is and how to apply it to the Nuri curriculum has been raised. Accordingly, this study defined early childhood AI education through literature research, identified the contents of AI education, and organized and operated it in the Nuri curriculum. As a results, AI education for children should be conducted for the purpose of cultivating digital capabilities based on computing thinking skills, and computers, the Internet, and programs were extracted as sub-elements of child AI education contents. Two approaches were proposed to incorporate this into the Nuri curriculum. The first is to set each of the three AI education contents as a life theme, select sub-factors accordingly, and plan and implement activities suitable for each sub-factors. The second is to develop and operate AI education contents at the level of sub-educational activities in accordance with the life theme of the existing Nuri curriculum. It is hoped that this study will consider the characteristics of early childhood education and be organized in the Nuri curriculum to realize the true meaning of early childhood AI education, and more research on AI play education programs according to the five areas of the Nuri curriculum.

Design and Implementation of ELAS in AI education (Experiential K-12 AI education Learning Assessment System)

  • Moon, Seok-Jae;Lee, Kibbm
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.62-68
    • /
    • 2022
  • Evaluation as learning is important for the learner competency test, and the applicable method is studied. Assessment is the role of diagnosing the current learner's status and facilitating learning through appropriate feedback. The system is insufficient to enable process-oriented evaluation in small educational institute. Focusing on becoming familiar with the AI through experience can end up simply learning how to use the tools or just playing with them rather than achieving ultimate goals of AI education. In a previous study, the experience way of AI education with PLAY model was proposed, but the assessment stage is insufficient. In this paper, we propose ELAS (Experiential K-12 AI education Learning Assessment System) for small educational institute. In order to apply the Assessment factor in in this system, the AI-factor is selected by researching the goals of the current SW education and AI education. The proposed system consists of 4 modules as Assessment-factor agent, Self-assessment agent, Question-bank agent and Assessment -analysis agent. Self-assessment learning is a powerful mechanism for improving learning for students. ELAS is extended with the experiential way of AI education model of previous study, and the teacher designs the assessment through the ELAS system. ELAS enables teachers of small institutes to automate analysis and manage data accumulation following their learning purpose. With this, it is possible to adjust the learning difficulty in curriculum design to make better for your purpose.

Unveiling the synergistic nexus: AI-driven coding integration in mathematics education for enhanced computational thinking and problem-solving

  • Ipek Saralar-Aras;Yasemin Cicek Schoenberg
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.233-254
    • /
    • 2024
  • This paper delves into the symbiotic integration of coding and mathematics education, aimed at cultivating computational thinking and enriching mathematical problem-solving proficiencies. We have identified a corpus of scholarly articles (n=38) disseminated within the preceding two decades, subsequently culling a portion thereof, ultimately engendering a contemplative analysis of the extant remnants. In a swiftly evolving society driven by the Fourth Industrial Revolution and the ascendancy of Artificial Intelligence (AI), understanding the synergy between these domains has become paramount. Mathematics education stands at the crossroads of this transformation, witnessing a profound influence of AI. This paper explores the evolving landscape of mathematical cognition propelled by AI, accentuating how AI empowers advanced analytical and problem-solving capabilities, particularly in the realm of big data-driven scenarios. Given this shifting paradigm, it becomes imperative to investigate and assess AI's impact on mathematics education, a pivotal endeavor in forging an education system aligned with the future. The symbiosis of AI and human cognition doesn't merely amplify AI-centric thinking but also fosters personalized cognitive processes by facilitating interaction with AI and encouraging critical contemplation of AI's algorithmic underpinnings. This necessitates a broader conception of educational tools, encompassing AI as a catalyst for mathematical cognition, transcending conventional linguistic and symbolic instruments.

Survey of Recent Research in Education based on Artificial Intelligence (AI 기반 교육 현황과 기술 동향)

  • Jeon, H.B.;Chung, H.;Kang, B.O.;Lee, Y.K.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.71-80
    • /
    • 2021
  • Artificial intelligence (AI) will have a huge impact on future education. We look at the role of AI in education and changes in schools. Personalized education is being attempted in limited services, and an interactive tutor service with speech recognition/dialog technology is being developed. In the future, we look forward to fully personalized education for individual students through AI teachers. Teachers are expected to make more effort to teach creative thinking, critical thinking, communication, and collaboration. As the speed of development of AI technology accelerates, we expect that AI-based education will be deeply established around us in the near future. We first introduce the details of the personalization technology and then discuss the AI-based foreign language speaking education research conducted by ETRI.

A Study on the Role of University Libraries in the Cultivation of Generative AI Literacy by Users (이용자의 생성형 AI 리터러시 함양을 위한 대학도서관의 역할 연구)

  • Su Hyun Jang;Young Joon Nam
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.2
    • /
    • pp.263-282
    • /
    • 2023
  • The purpose of this study is to understand the current status of AI literacy education for users of Korean university libraries and the perception and justification of AI literacy education in university libraries in relation to AI literacy, which is emerging as a key capability in the changing intelligent information society. To this end, this study analyzed the change in the concept of AI literacy and the self-awareness of AI literacy, including generative AI by students who are university library users. As a result of the analysis, positive responses were mainly confirmed in the case of willingness to take AI literacy education and generative AI literacy education in university libraries, and this study suggests that AI literacy education in university essential curriculum is conducted in connection with essential basic education.

Domestic Research Trend of AI Education Program: A Scoping Review (국내 AI 교육 프로그램 연구동향 분석: 주제범위 문헌고찰 방법론을 적용하여)

  • Han, Jeongyun;Huh, Sun Young
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.879-890
    • /
    • 2021
  • AI education is being emphasized nationwide as a literacy education. At this point, it is necessary to identify critical issues and suggest the direction of future research by examining domestic AI education research trends. To this end, the study applied the scoping review method. A total of 29 AI educational studies from 2017 to 2020 in South Korea were analyzed. As a result, it was confirmed that the number of studies increased rapidly in 2020, and a large proportion of studies targeted elementary school students. In addition, the study found that AI principles were treated as contents at a high rate, both cognitive and affective aspects were frequently reported as a learning outcome, and various practice environments were used relatively evenly. Based on the results, the direction of future research was discussed and suggested.

Exploring AI-based Teaching and Learning Activities for Software Education in Kindergarteners to the Second Graders (유치원 및 초등학교 1-2학년을 위한 AI 기반 교수학습활동 탐색)

  • Kim, Sohee;Jeong, Youngsik
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.413-421
    • /
    • 2020
  • AI(Artificial intelligence) has brought many changes to our living in the Fourth Industrial Revolution. In our daily lives, we can easily access unmanned automatic systems using AI such as unmanned cameras and unmanned delivery boxes. Therefore, AI education has become an important part of daily life in the future. Currently, however, we have very few cases of AI education for young students, such as kindergarten and lower grades in elementary schools. Based on the software education curriculum of kindergarteners and lower graders previously studied, we presented the examples of AI-based teaching and learning activities and presented related AI-based computational thinking by each topic. However, in order for these teaching and learning activities to be applied to public education, it is necessary to secure sufficient class time, improve the educational environment, and actively support teaching activities.

An Analysis Study of SW·AI elements of Primary Textbooks based on the 2015 Revised National Curriculum (2015 개정교육과정에 따른 초등학교 교과서의 SW·AI 요소 분석 연구)

  • Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.317-325
    • /
    • 2021
  • In this paper, the degree of reflection of SW·AI elements and CT elements was investigated and analyzed for a total of 44 textbooks of Korean, social, moral, mathematics and science textbooks based on the 2015 revised curriculum. As a result of the analysis, most of the activities of data collection, data analysis, and data presentation, which are ICT elements, were not reflected, and algorithm and programming elements were not reflected among SW·AI content elements, and there were no abstraction, automation, and generalization elements among CT elements. Therefore, in order to effectively implement SW·AI convergence education in elementary school subjects, we will expand ICT utilization activities to SW·AI utilization activities. Training on the understanding of SW·AI convergence education and improvement of teaching and learning methods using SW·AI is needed for teachers. In addition, it is necessary to establish an information curriculum and secure separate class hours for substantial SW·AI education.