• Title/Summary/Keyword: AI in Diagnosis

Search Result 239, Processing Time 0.025 seconds

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.

Deep learning for the classification of cervical maturation degree and pubertal growth spurts: A pilot study

  • Mohammad-Rahimi, Hossein;Motamadian, Saeed Reza;Nadimi, Mohadeseh;Hassanzadeh-Samani, Sahel;Minabi, Mohammad A. S.;Mahmoudinia, Erfan;Lee, Victor Y.;Rohban, Mohammad Hossein
    • The korean journal of orthodontics
    • /
    • v.52 no.2
    • /
    • pp.112-122
    • /
    • 2022
  • Objective: This study aimed to present and evaluate a new deep learning model for determining cervical vertebral maturation (CVM) degree and growth spurts by analyzing lateral cephalometric radiographs. Methods: The study sample included 890 cephalograms. The images were classified into six cervical stages independently by two orthodontists. The images were also categorized into three degrees on the basis of the growth spurt: pre-pubertal, growth spurt, and post-pubertal. Subsequently, the samples were fed to a transfer learning model implemented using the Python programming language and PyTorch library. In the last step, the test set of cephalograms was randomly coded and provided to two new orthodontists in order to compare their diagnosis to the artificial intelligence (AI) model's performance using weighted kappa and Cohen's kappa statistical analyses. Results: The model's validation and test accuracy for the six-class CVM diagnosis were 62.63% and 61.62%, respectively. Moreover, the model's validation and test accuracy for the three-class classification were 75.76% and 82.83%, respectively. Furthermore, substantial agreements were observed between the two orthodontists as well as one of them and the AI model. Conclusions: The newly developed AI model had reasonable accuracy in detecting the CVM stage and high reliability in detecting the pubertal stage. However, its accuracy was still less than that of human observers. With further improvements in data quality, this model should be able to provide practical assistance to practicing dentists in the future.

Knowledge Based Recommender System for Disease Diagnostic and Treatment Using Adaptive Fuzzy-Blocks

  • Navin K.;Mukesh Krishnan M. B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.284-310
    • /
    • 2024
  • Identifying clinical pathways for disease diagnosis and treatment process recommendations are seriously decision-intensive tasks for health care practitioners. It requires them to rely on their expertise and experience to analyze various categories of health parameters from a health record to arrive at a decision in order to provide an accurate diagnosis and treatment recommendations to the end user (patient). Technological adaptation in the area of medical diagnosis using AI is dispensable; using expert systems to assist health care practitioners in decision-making is becoming increasingly popular. Our work architects a novel knowledge-based recommender system model, an expert system that can bring adaptability and transparency in usage, provide in-depth analysis of a patient's medical record, and prescribe diagnostic results and treatment process recommendations to them. The proposed system uses a set of parallel discrete fuzzy rule-based classifier systems, with each of them providing recommended sub-outcomes of discrete medical conditions. A novel knowledge-based combiner unit extracts significant relationships between the sub-outcomes of discrete fuzzy rule-based classifier systems to provide holistic outcomes and solutions for clinical decision support. The work establishes a model to address disease diagnosis and treatment recommendations for primary lung disease issues. In this paper, we provide some samples to demonstrate the usage of the system, and the results from the system show excellent correlation with expert assessments.

A Clinical Decision Support System for Diagnosis of Hearing Loss (청각장애 진단을 위한 의사결정 지원체계 개발에 관한 연구)

  • Chae, Young-Moon;Park, In-Yong;Jung, Seung-Kyu;Chang, Tae-Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.22 no.1 s.25
    • /
    • pp.57-64
    • /
    • 1989
  • A decision support system (DSS) was developed to support doctor's decision-making in diagnosing hearing loss. The final diagnosis encompassed 41 diseases with the problem of hearing loss. The system was developed by integrating model-oriented DSS technique and artificial intelligence technology. The system can be used as both diagnosis tool and teaching tool for medical students. Furthermore, the AI technology obtained from this study may also be used in developing DSS for hospital management.

  • PDF

Artificial Intelligence Plant Doctor: Plant Disease Diagnosis Using GPT4-vision

  • Yoeguang Hue;Jea Hyeoung Kim;Gang Lee;Byungheon Choi;Hyun Sim;Jongbum Jeon;Mun-Il Ahn;Yong Kyu Han;Ki-Tae Kim
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.99-102
    • /
    • 2024
  • Integrated pest management is essential for controlling plant diseases that reduce crop yields. Rapid diagnosis is crucial for effective management in the event of an outbreak to identify the cause and minimize damage. Diagnosis methods range from indirect visual observation, which can be subjective and inaccurate, to machine learning and deep learning predictions that may suffer from biased data. Direct molecular-based methods, while accurate, are complex and time-consuming. However, the development of large multimodal models, like GPT-4, combines image recognition with natural language processing for more accurate diagnostic information. This study introduces GPT-4-based system for diagnosing plant diseases utilizing a detailed knowledge base with 1,420 host plants, 2,462 pathogens, and 37,467 pesticide instances from the official plant disease and pesticide registries of Korea. The AI plant doctor offers interactive advice on diagnosis, control methods, and pesticide use for diseases in Korea and is accessible at https://pdoc.scnu.ac.kr/.

A Study on Development Strategies for Artificial Intelligence-Based Personalized Mathematics Learning Services (인공지능 기반 개인 맞춤 수학학습 서비스 개발 방향에 관한 연구)

  • Joo-eun Hyun;Chi-geun Lee;Daehwan Lee;Youngseok Lee;Dukhoi Koo
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.605-614
    • /
    • 2023
  • In In the era of digital transition, AI-based personalized services are emerging in the field of education. This research aims to examine the development strategies for implementing AI-based learning services in school. Focusing on AI-based math learning service "Math Cell" developed by i-Scream Edu, this study surveyed the functional requirements from the perspective of an educator. The results were analyzed for importance and suitability using IPA, and expert opinions were surveyed to explore specific development directions for the service. Consequently, importance in all areas such as diagnosis, learning, evaluation, and management averaged 4.82 and performance averaged 4.56, showing excellent results in most questions, and in particular, importance was higher than performance. Among certain detailed functions, concept learning, customized task presentation, evaluation result analysis function, dashboard-related functions, and learning materials in the dashboard were not intuitive for students to understand and had to be supplemented. This study provides meaningful insights by summarizing expert opinions on AI-based personalized mathematics learning services, thereby contributing to the exploration of the development strategies for "Math Cell".

Development of Artificial-Intelligent Power Quality Diagnosis Algorithm using DSP (DSP를 이용한 인공지능형 전력품질 진단기법 연구)

  • Chung, Gyo-Gbum;Kwack, Sun-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.116-124
    • /
    • 2009
  • This paper proposes a new Artificial-Intelligent(AI) Power Quality(PQ) diagnosis algorithm using Discrete Wavelet Transform(DWT), Fast Fourier Transform(FFT), Root-Mean-Square(RMS) value. The developed algorithm is able to detect and classify the PQ problems such as the transient, the voltage sag, the voltage swell, the voltage interruption and the total harmonics distortion. The 15.36[kHz] sampling frequency is used to measure the voltages in a power system. The measured signals are used for DWT, FFT, RMS calculation. For AI diagnosis of the PQ problems, a simple multi-layered Artificial Neural Network(ANN) with the back-propagation algorithm is adopted, programmed in C++ and tested in PSIM simulation studies. Finally, the algorithm, which is installed in MP PQ+256 with TI DSP320C6713, is proved to diagnose the PQ problems efficiently.

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

Research on the development of demand for medical and bio technology using big data (빅데이터 활용 의학·바이오 부문 사업화 가능 기술 연구)

  • Lee, Bongmun.;Nam, Gayoung;Kang, Byeong Chul;Kim, CheeYong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.345-352
    • /
    • 2022
  • Conducting AI-based fusion business due to the increment of ICT fusion medical device has been expanded. In addition, AI-based medical devices help change existing medical system on treatment into the paradigm of customized treatment such as preliminary diagnosis and prevention. It will be generally promoted to the change of medical device industry. Although the current demand forecasting of medical biotechnology commercialization is based on the method of Delphi and AHP, there is a problem that it is difficult to have a generalization due to fluctuation results according to a pool of participants. Therefore, the purpose of the paper is to predict demand forecasting for identifying promising technology based on building up big data in medical biotechnology. The development method is to employ candidate technologies of keywords extracted from SCOPUS and to use word2vec for drawing analysis indicator, technological distance similarity, and recommended technological similarity of top-level items in order to achieve a reasonable result. In addition, the method builds up academic big data for 5 years (2016-2020) in order to commercialize technology excavation on demand perspective. Lastly, the paper employs global data studies in order to develop domestic and international demand for technology excavation in the medical biotechnology field.

Diagnosis of porcine reproductive and respiratory syndrome (PRRS) and its serological survey using the reverse transcription and polymerase chain reaction (RT-PCR) and ELISA (RT-PCR과 ELISA를 이용한 PRRS 진단 및 항체가 조사)

  • Chu Keum-Suk;Han Keu-Sam;Han Jae-Cheol;Song Hee-Jong
    • Korean Journal of Veterinary Service
    • /
    • v.27 no.3
    • /
    • pp.273-280
    • /
    • 2004
  • The studies were performed for the PRRS antigen and antibody detection from breeding farms, artificial insemination(AI) center and growing farms in Jeonbuk province. 1. Specific PRRS primers were successfully amplified ORF6 617bp and ORF7 448 bp on agarose gel. 2. RT-PCR method has been establish by commercial kit and the thermal cycler program consisted of 30 cycles: $95^{\circ}C$ for 30 sec, $45^{\circ}C$ for 30 sec, and $72^{\circ}C$ for 45 sec. 3. The results of PRRS antibody test by ELISA method in AI centers were $6.6\%,\;53.3\%$ and breeding farms $65\%,\;65\%\;and\;38.7\%$, respectively. The serological positive of the antibody in gilt higher than sow. 4. The sero-positive of the PRRS antibody showed average $21\%$ in domestic farms, $56.2\%$ in breeding farms, and $29.9\%$ in AI center.