• Title/Summary/Keyword: AI in Diagnosis

Search Result 239, Processing Time 0.031 seconds

Positive Predictive Values of Abnormality Scores From a Commercial Artificial Intelligence-Based Computer-Aided Diagnosis for Mammography

  • Si Eun Lee;Hanpyo Hong;Eun-Kyung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.343-350
    • /
    • 2024
  • Objective: Artificial intelligence-based computer-aided diagnosis (AI-CAD) is increasingly used in mammography. While the continuous scores of AI-CAD have been related to malignancy risk, the understanding of how to interpret and apply these scores remains limited. We investigated the positive predictive values (PPVs) of the abnormality scores generated by a deep learning-based commercial AI-CAD system and analyzed them in relation to clinical and radiological findings. Materials and Methods: From March 2020 to May 2022, 656 breasts from 599 women (mean age 52.6 ± 11.5 years, including 0.6% [4/599] high-risk women) who underwent mammography and received positive AI-CAD results (Lunit Insight MMG, abnormality score ≥ 10) were retrospectively included in this study. Univariable and multivariable analyses were performed to evaluate the associations between the AI-CAD abnormality scores and clinical and radiological factors. The breasts were subdivided according to the abnormality scores into groups 1 (10-49), 2 (50-69), 3 (70-89), and 4 (90-100) using the optimal binning method. The PPVs were calculated for all breasts and subgroups. Results: Diagnostic indications and positive imaging findings by radiologists were associated with higher abnormality scores in the multivariable regression analysis. The overall PPV of AI-CAD was 32.5% (213/656) for all breasts, including 213 breast cancers, 129 breasts with benign biopsy results, and 314 breasts with benign outcomes in the follow-up or diagnostic studies. In the screening mammography subgroup, the PPVs were 18.6% (58/312) overall and 5.1% (12/235), 29.0% (9/31), 57.9% (11/19), and 96.3% (26/27) for score groups 1, 2, 3, and 4, respectively. The PPVs were significantly higher in women with diagnostic indications (45.1% [155/344]), palpability (51.9% [149/287]), fatty breasts (61.2% [60/98]), and certain imaging findings (masses with or without calcifications and distortion). Conclusion: PPV increased with increasing AI-CAD abnormality scores. The PPVs of AI-CAD satisfied the acceptable PPV range according to Breast Imaging-Reporting and Data System for screening mammography and were higher for diagnostic mammography.

Pet Disease Prediction Service and Integrated Management Application (반려동물 질병예측서비스 및 통합관리 어플리케이션)

  • Ki-Du Pyo;Dong-Young Lee;Won-Se Jung;Oh-Jun Kwon;Kyung-Suk Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.133-137
    • /
    • 2023
  • In this paper, we developed a 'comprehensive pet management application' that combines pet AI diagnosis, animal hospital search, smart household accounts, and community functions. The application can solve the inconvenience of users who have to use multiple functions as separate applications, and can easily use pet AI diagnosis services through photos, provides animal hospital information using crawling, finds nearby animal hospitals, and supports smart households that can scan receipts using OCR text extraction techniques. By using this application, information necessary for raising pets such as health and consumption details of pets can be managed in one system.

Study on the Perception and Application of AI in Korean Medicine through Practice and Questionnaire of Korean Medicine Using a Diagnostic Expert System (진단전문가시스템을 이용한 한의 실습의 설문 조사를 통한 AI에 대한 인식 및 활용방안 고찰)

  • Yang, Ji-Hyuk;Woo, Jeong-A;Shin, Dong-Ha;Park, Suho;Kwon, Young-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.22-27
    • /
    • 2021
  • This study conducted a questionnaire for students of Pusan National University Graduate School of Korean Medicine who practiced using the Oriental Medicine Diagnosis System (ODS). From the questionnaire, this study investigated current state of application and perception of AI in Korean Medicine and explored the direction of ODS improvement and utilization. The survey questions consisted of six questions examining the satisfaction of the diagnostic expert system, five questions evaluating the availability of the diagnostic expert system, and six questions to predict the impact of AI on the Korean medicine community. The survey analysis showed high satisfaction with practice using ODS. On the other hand, the possibility of using ODS, especially in clinical use, was evaluated as relatively low compared to the satisfaction of the practice. Therefore, the overall impact of AI on the Korean medical community is not expected to be large. Although there are difficulties in standardization of clinical data due to the academic characteristics of Korean medicine, it is necessary to continue attempts to apply AI. By actively introducing educational tools using the latest AI techniques to the diagnosis experience and doctor-patient role in a practice, students will be able to increase their satisfaction with their practice and respond appropriately to the state-of-the-art medical environment.

Deep Learning-Based Artificial Intelligence for Mammography

  • Jung Hyun Yoon;Eun-Kyung Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1225-1239
    • /
    • 2021
  • During the past decade, researchers have investigated the use of computer-aided mammography interpretation. With the application of deep learning technology, artificial intelligence (AI)-based algorithms for mammography have shown promising results in the quantitative assessment of parenchymal density, detection and diagnosis of breast cancer, and prediction of breast cancer risk, enabling more precise patient management. AI-based algorithms may also enhance the efficiency of the interpretation workflow by reducing both the workload and interpretation time. However, more in-depth investigation is required to conclusively prove the effectiveness of AI-based algorithms. This review article discusses how AI algorithms can be applied to mammography interpretation as well as the current challenges in its implementation in real-world practice.

2023 Survey on User Experience of Artificial Intelligence Software in Radiology by the Korean Society of Radiology

  • Eui Jin Hwang;Ji Eun Park;Kyoung Doo Song;Dong Hyun Yang;Kyung Won Kim;June-Goo Lee;Jung Hyun Yoon;Kyunghwa Han;Dong Hyun Kim;Hwiyoung Kim;Chang Min Park;Radiology Imaging Network of Korea for Clinical Research (RINK-CR)
    • Korean Journal of Radiology
    • /
    • v.25 no.7
    • /
    • pp.613-622
    • /
    • 2024
  • Objective: In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). Materials and Methods: An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. Results: Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. Conclusion: The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.

Development of Multi-Sensor Convergence Monitoring and Diagnosis Device based on Edge AI for the Modular Main Circuit Breaker of Korean High-Speed Rolling Stock

  • Byeong Ju, Yun;Jhong Il, Kim;Jae Young, Yoon;Jeong Jin, Kang;You Sik, Hong
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.569-575
    • /
    • 2022
  • This is a research thesis on the development of a monitoring and diagnosis device that prevents the risk of an accident through monitoring and diagnosis of a modular Main Circuit Breaker (MCB) using Vacuum Interrupter (VI) for Korean high-speed rolling stock. In this paper, a comprehensive MCB monitoring and diagnosis was performed by converging vacuum level diagnosis of interrupter, operating coil monitoring of MCB and environmental temperature/humidity monitoring of modular box. In addition, to develop an algorithm that is expected to have a similar data processing before the actual field test of the MCB monitoring and diagnosis device in 2023, the cluster analysis and factor analysis were performed using the WEKA data mining technique on the big data of Korean railroad transformer, which was previously researched by Tae Hee Evolution with KORAIL.

Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: A survey

  • Sur, Jaideep;Bose, Sourav;Khan, Fatima;Dewangan, Deeplaxmi;Sawriya, Ekta;Roul, Ayesha
    • Imaging Science in Dentistry
    • /
    • v.50 no.3
    • /
    • pp.193-198
    • /
    • 2020
  • Purpose: This study investigated knowledge, attitudes, and perceptions regarding the future of artificial intelligence (AI) for radiological diagnosis among dental specialists in central India. Materials and Methods: An online survey was conducted consisting of 15 closed-ended questions using Google Forms and circulated among dental professionals in central India. The survey consisted of questions regarding participants' recognition of and attitudes toward AI, their opinions on directions of AI development, and their perceptions regarding the future of AI in oral radiology. Results: Of the 250 participating dentists, 68% were already familiar with the concept of AI, 69% agreed that they expect to use AI for making dental diagnoses, 51% agreed that the major function of AI would be the interpretation of complicated radiographic scans, and 63% agreed that AI would have a future in India. Conclusion: This study concluded that dental specialists were well aware of the concept of AI, that AI programs could be used as an adjunctive tool by dentists to increasing their diagnostic precision when interpreting radiographs, and that AI has a promising role in radiological diagnosis.

A New Study on Vibration Data Acquisition and Intelligent Fault Diagnostic System for Aero-engine

  • Ding, Yongshan;Jiang, Dongxiang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.16-21
    • /
    • 2008
  • Aero-engine, as one kind of rotating machinery with complex structure and high rotating speed, has complicated vibration faults. Therefore, condition monitoring and fault diagnosis system is very important for airplane security. In this paper, a vibration data acquisition and intelligent fault diagnosis system is introduced. First, the vibration data acquisition part is described in detail. This part consists of hardware acquisition modules and software analysis modules which can realize real-time data acquisition and analysis, off-line data analysis, trend analysis, fault simulation and graphical result display. The acquisition vibration data are prepared for the following intelligent fault diagnosis. Secondly, two advanced artificial intelligent(AI) methods, mapping-based and rule-based, are discussed. One is artificial neural network(ANN) which is an ideal tool for aero-engine fault diagnosis and has strong ability to learn complex nonlinear functions. The other is data mining, another AI method, has advantages of discovering knowledge from massive data and automatically extracting diagnostic rules. Thirdly, lots of historical data are used for training the ANN and extracting rules by data mining. Then, real-time data are input into the trained ANN for mapping-based fault diagnosis. At the same time, extracted rules are revised by expert experience and used for rule-based fault diagnosis. From the results of the experiments, the conclusion is obvious that both the two AI methods are effective on aero-engine vibration fault diagnosis, while each of them has its individual quality. The whole system can be developed in local vibration monitoring and real-time fault diagnosis for aero-engine.

  • PDF

A Fault Prognostic System for the Logistics Rotational Equipment (물류 회전설비 고장예지 시스템)

  • Soo Hyung Kim;Berdibayev Yergali;Hyeongki Jo;Kyu Ik Kim;Jin Suk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.168-175
    • /
    • 2023
  • In the era of the 4th Industrial Revolution, Logistic 4.0 using data-based technologies such as IoT, Bigdata, and AI is a keystone to logistics intelligence. In particular, the AI technology such as prognostics and health management for the maintenance of logistics facilities is being in the spotlight. In order to ensure the reliability of the facilities, Time-Based Maintenance (TBM) can be performed in every certain period of time, but this causes excessive maintenance costs and has limitations in preventing sudden failures and accidents. On the other hand, the predictive maintenance using AI fault diagnosis model can do not only overcome the limitation of TBM by automatically detecting abnormalities in logistics facilities, but also offer more advantages by predicting future failures and allowing proactive measures to ensure stable and reliable system management. In order to train and predict with AI machine learning model, data needs to be collected, processed, and analyzed. In this study, we have develop a system that utilizes an AI detection model that can detect abnormalities of logistics rotational equipment and diagnose their fault types. In the discussion, we will explain the entire experimental processes : experimental design, data collection procedure, signal processing methods, feature analysis methods, and the model development.

Artificial Intelligence in Gastric Cancer Imaging With Emphasis on Diagnostic Imaging and Body Morphometry

  • Kyung Won Kim;Jimi Huh ;Bushra Urooj ;Jeongjin Lee ;Jinseok Lee ;In-Seob Lee ;Hyesun Park ;Seongwon Na ;Yousun Ko
    • Journal of Gastric Cancer
    • /
    • v.23 no.3
    • /
    • pp.388-399
    • /
    • 2023
  • Gastric cancer remains a significant global health concern, coercing the need for advancements in imaging techniques for ensuring accurate diagnosis and effective treatment planning. Artificial intelligence (AI) has emerged as a potent tool for gastric-cancer imaging, particularly for diagnostic imaging and body morphometry. This review article offers a comprehensive overview of the recent developments and applications of AI in gastric cancer imaging. We investigated the role of AI imaging in gastric cancer diagnosis and staging, showcasing its potential to enhance the accuracy and efficiency of these crucial aspects of patient management. Additionally, we explored the application of AI body morphometry specifically for assessing the clinical impact of gastrectomy. This aspect of AI utilization holds significant promise for understanding postoperative changes and optimizing patient outcomes. Furthermore, we examine the current state of AI techniques for the prognosis of patients with gastric cancer. These prognostic models leverage AI algorithms to predict long-term survival outcomes and assist clinicians in making informed treatment decisions. However, the implementation of AI techniques for gastric cancer imaging has several limitations. As AI continues to evolve, we hope to witness the translation of cutting-edge technologies into routine clinical practice, ultimately improving patient care and outcomes in the fight against gastric cancer.