Recently, the necessity of safety diagnosis of electrical devices has been increasing as the fire caused by electric devices has increased rapidly. This study is concerned with the safety diagnosis of electric equipment using intelligent Fuzzy technology. It is used as a diagnostic input for the multiple electrical safety factors such as the use current, cumulative use time, deterioration and arc characteristics inherent to the equipment. In order to extract these information in real time, a device composed of various sensor circuits, DSP signal processing, and communication circuit is implemented. The fuzzy logic algorithm using the Gaussian function for each information is designed and compiled to be implemented on a small DSP board. The fuzzy logic receives the four diagnostic information, deduces it by the fuzzy engine, and outputs the overall safety status of the device as a 100-step analog fuzzy value familiar to human sensibility. By experiments of a device that combines hardware and fuzzy algorithm implemented in this study, it is verified that it can be implemented in a small DSP board with human-friendly fuzzy value, diagnosing real-time safety conditions during operation of electric equipment. In the future, we expect to be able to study more intelligent diagnostic systems based on artificial intelligent with AI dedicated Micom.
Angiostrongyliasis is difficult to be diagnosed for the reason that no ideal method can be used. Serologic tests require specific equipment and are not always available in poverty-stricken zone and are time-consuming. A lateral flow immunoassay (LFIA) may be useful for angiostrongyliasis control. We established a LFIA for the diagnosis of angiostrongyliasis based on 2 monoclonal antibodies (mAbs) against antigens of Angiostrongylus cantonensis adults. The sensitivity and specificity were 91.1% and 100% in LFIA, while those of commercial ELISA kit was 97.8% and 86.3%, respectively. Youden index was 0.91 in LFIA and 0.84 in commercial ELISA kit. LFIA showed detection limit of 1 ng/ml of A. cantonensis ES antigens. This LFIA was simple, rapid, highly sensitive and specific, which opened an alternative approach for the diagnosis of human angiostrongyliasis.
Journal of the Institute of Convergence Signal Processing
/
v.20
no.4
/
pp.226-231
/
2019
A WTCI is an important criteria for evaluating an mount of patient's tongue coating in tongue diagnosis. However, Previous WTCI tongue coating evaluation methods is a most of quantitatively measuring ration of the extracted tongue coating region and tongue body region, which has a non-objective measurement problem occurring by exposure conditions of tongue image or the recognition performance of tongue coating. Therefore, a WTCI based on deep learning is proposed for classifying an amount of tonger coating in this paper. This is applying the AI deep learning method using big data. to WTCI for evaluating an amount of tonger coating. In order to verify the effectiveness performance of the deep learning in tongue coating evaluating method, we classify the 3 types class(no coating, some coating, intense coating) of an amount of tongue coating by using CNN model. As a results by testing a building the tongue coating sample images for learning and verification of CNN model, proposed method is showed 96.7% with respect to the accuracy of classifying an amount of tongue coating.
International Journal of Computer Science & Network Security
/
v.23
no.9
/
pp.77-90
/
2023
Today, crops face many characteristics/diseases. Insect damage is one of the main characteristics/diseases. Insecticides are not always effective because they can be toxic to some birds. It will also disrupt the natural food chain for animals. A common practice of plant scientists is to visually assess plant damage (leaves, stems) due to disease based on the percentage of disease. Plants suffer from various diseases at any stage of their development. For farmers and agricultural professionals, disease management is a critical issue that requires immediate attention. It requires urgent diagnosis and preventive measures to maintain quality and minimize losses. Many researchers have provided plant disease detection techniques to support rapid disease diagnosis. In this review paper, we mainly focus on artificial intelligence (AI) technology, image processing technology (IP), deep learning technology (DL), vector machine (SVM) technology, the network Convergent neuronal (CNN) content Detailed description of the identification of different types of diseases in tomato and potato plants based on image retrieval technology (CBIR). It also includes the various types of diseases that typically exist in tomato and potato. Content-based Image Retrieval (CBIR) technologies should be used as a supplementary tool to enhance search accuracy by encouraging you to access collections of extra knowledge so that it can be useful. CBIR systems mainly use colour, form, and texture as core features, such that they work on the first level of the lowest level. This is the most sophisticated methods used to diagnose diseases of tomato plants.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.4
/
pp.77-89
/
2024
Knee osteoarthritis (OA) is a very common musculoskeletal disorder worldwide. The assessment of knee osteoarthritis, which requires a rapid and accurate initial diagnosis, is determined to be different depending on the currently dispersed classification system, and each classification system has different criteria. Also, because the medical staff directly sees and reads the X-ray pictures, it depends on the subjective opinion of the medical staff, and it takes time to establish an accurate diagnosis and a clear treatment plan. Therefore, in this study, we designed the stenosis length measurement algorithm and Osteophyte detection and length measurement algorithm, which are the criteria for determining the knee osteoarthritis grade, separately using CNN, which is a deep learning technique. In addition, we would like to create a grading system that integrates and complements the existing classification system and show results that match the judgments of actual medical staff. Based on publicly available OAI (Osteoarthritis Initiative) data, a total of 9,786 knee osteoarthritis data were used in this study, eventually achieving an Accuracy of 69.8% and an F1 score of 76.65%.
KIPS Transactions on Computer and Communication Systems
/
v.11
no.7
/
pp.233-240
/
2022
Most of the recent AI researches has focused on developing AI models. However, recently, artificial intelligence research has gradually changed from model-centric to data-centric, and the importance of learning data is getting a lot of attention based on this trend. However, it takes a lot of time and effort because the preparation of learning data takes up a significant part of the entire process, and the generation of labeling data also differs depending on the purpose of development. Therefore, it is need to develop a tool with various labeling functions to solve the existing unmetneeds. In this paper, we describe a labeling system for creating precise and fast labeling data of medical images. To implement this, a semi-automatic method using Back Projection, Grabcut techniques and an automatic method predicted through a machine learning model were implemented. We not only showed the advantage of running time for the generation of labeling data of the proposed system, but also showed superiority through comparative evaluation of accuracy. In addition, by analyzing the image data set of about 1,000 patients, meaningful diagnostic indexes were presented for men and women in the diagnosis of sarcopenia.
Journal of Korea Society of Digital Industry and Information Management
/
v.19
no.3
/
pp.245-251
/
2023
Facial expression recognition plays a significant role in understanding human emotional states. With the advancement of AI and computer vision technologies, extensive research has been conducted in various fields, including improving customer service, medical diagnosis, and assessing learners' understanding in education. In this study, we develop a model that can infer emotions in real-time from a webcam using transfer learning with TensorFlow.js and MobileNet. While existing studies focus on achieving high accuracy using deep learning models, these models often require substantial resources due to their complex structure and computational demands. Consequently, there is a growing interest in developing lightweight deep learning models and transfer learning methods for restricted environments such as web browsers and edge devices. By employing MobileNet as the base model and performing transfer learning, our study develops a deep learning transfer model utilizing JavaScript-based TensorFlow.js, which can predict emotions in real-time using facial input from a webcam. This transfer model provides a foundation for implementing facial expression recognition in resource-constrained environments such as web and mobile applications, enabling its application in various industries.
Truong, Phuong Kim;Lao, Thuan Duc;Doan, Thao Phuong Thi;Huyen Le, Thuy Ai
Asian Pacific Journal of Cancer Prevention
/
v.16
no.6
/
pp.2209-2213
/
2015
DNA methylation of tumor suppressor gene promoters is the most frequent phenomenon leading to inactivation of function, consequently driving malignant cell transformation. Cyclin D2 is implicated in tumor suppression. In our study, we carried out the MSP assay to evaluation the methylation status at CpG islands in the cyclin D2 promoter in breast cancer cases from the Vietnamese population. The results showed that the frequency of methylation reached 62.1% (59 of 95 breast cancer tumors), but was low in non-cancer specimens at 10% (2 of 20 non-cancer specimens). Additionally, with an RR (relative risk) and OR (odd ratios) of 6.21 and 14.8, DNA hypermethylation of cyclin D2 increased the possibility of malignant transformation. Our results confirmed the cyclin D2 hypermethylation could be used as the potential biomarker which could be applied in prognosis and early diagnosis of Vietnamese breast cancer patients.
Journal of the Architectural Institute of Korea Structure & Construction
/
v.35
no.1
/
pp.11-19
/
2019
Recently, with the development of the fourth industrial revolution that has been achieved through the fusion of information and communication technology (ICT), the technologies of AI, IOT, BIG-DATA, it is increasing utilization rate by industry and research and development of application technologies are being actively carried out. Especially, in the case of unmanned aerial vehicles, the construction market is expected to be one of the most commercialized areas in the world for the next decade. However, research on utilization of unmanned aerial vehicles in the construction field in Korea is insufficient. In this study, We have developed a quantitative building inspection method using the unmanned aerial vehicle and presented the protocol for it. The proposed protocol was verified by applying it to existing old buildings, and defect information could be quantified by calculating length, width, and area for each defect. Through this technical research, the final goal is to contribute to the development of safety diagnosis technology using unmanned aerial vehicle and risk assessment technology of buildings in case of disaster such as earthquake.
Lee, Eun-Hee;Kim, Ellen Ai-Rhan;Kim, Ki-Soo;Cho, Beom-Jin;Koh, Jai-Kyoung;Pi, Soo-Young
Clinical and Experimental Pediatrics
/
v.46
no.4
/
pp.389-392
/
2003
Netherton's syndrome is an unusual disorder which consists of triad of ichtyosiform dermatosis, multiple defects of hair shaft and an atopic diathesis. The finding of bamboo hair is pathognomic in Netherton's syndrome and the ichthyosiform dermatosis may consist of either ichtyosis linearis circumflexa or congenital ichthyosiform erythroderma. Often, variability in the clinical features leads to a delay in diagnosis in many cases. We report a case of Netherton's syndrome diagnosed in the neonatal period. The patient presented with severe ichthyosis and confirmed microscopically distinctive bamboo hair.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.