This paper was studied abouta technology for detecting damage to temporary works equipment used in construction sites with explainable artificial intelligence (XAI). Temporary works equipment is mostly composed of steel or aluminum, and it is reused several times due to the characters of the materials in temporary works equipment. However, it sometimes causes accidents at construction sites by using low or decreased quality of temporary works equipment because the regulation and restriction of reuse in them is not strict. Currently, safety rules such as related government laws, standards, and regulations for quality control of temporary works equipment have not been established. Additionally, the inspection results were often different according to the inspector's level of training. To overcome these limitations, a method based with AI and image processing technology was developed. In addition, it was devised by applying explainableartificial intelligence (XAI) technology so that the inspector makes more exact decision with resultsin damage detect with image analysis by the XAI which is a developed AI model for analysis of temporary works equipment. In the experiments, temporary works equipment was photographed with a 4k-quality camera, and the learned artificial intelligence model was trained with 610 labelingdata, and the accuracy was tested by analyzing the image recording data of temporary works equipment. As a result, the accuracy of damage detect by the XAI was 95.0% for the training dataset, 92.0% for the validation dataset, and 90.0% for the test dataset. This was shown aboutthe reliability of the performance of the developed artificial intelligence. It was verified for usability of explainable artificial intelligence to detect damage in temporary works equipment by the experiments. However, to improve the level of commercial software, the XAI need to be trained more by real data set and the ability to detect damage has to be kept or increased when the real data set is applied.
본 연구는 초등학생들의 인공지능에 대한 이미지를 긍정적으로 향상시키고자 하는 인지 모델링기반 인공지능 알고리즘 교육 프로그램의 개발에 관한 것이다. 먼저 인공지능 알고리즘 중 협력필터링의 개념을 분석하고 이를 인지모델링 방법을 활용하여 교육 프로그램을 개발하였다. 이후 전문가 타당도 검사를 통해 인지 모델링기반의 콘텐츠 개발 방법과 개발된 프로그램에 대한 적절성이 CVR .80 이상으로 타당함을 확인하였다. 개발 프로그램은 초등학교 6학년 학생들에게 수업으로 적용하였고 형용사 단어 23쌍을 이용한 의미분별법을 이용하여 사전-사후에 인공지능에 대한 학생들의 이미지 인식의 변화를 살펴보았다. 학생들의 인공지능에 대한 이미지는 총 23개 단어 쌍 중 12개에서 유의미한 긍정적 변화를 확인할 수 있었다.
자연어 처리를 활용한 생성 AI 기술의 최근 발전은 텍스트, 이미지 및 비디오 제작에 큰 영향을 미쳤다. 이러한 발전에도 불구하고, AI가 생성한 출력의 일관성 및 재사용 가능성과 관련하여 상당한 문제가 있다. 이는 캐릭터와 특정 객체를 생성하는 것이 중요한 만화 제작 분야에서 문제가 될 수 있다. 이를 해결하기 위해 언어 분석 기반 요구사항 엔지니어링과 만화 엔지니어링의 접목을 제안한다. 제안된 방법은 자연어 분석을 위한 Chomsky와 Fillmore의 언어학을 적용하고 객체의 상호작용을 표현하기 위한 UML 시퀀스 모델 사용하여 일관적인 3D Objects를 생성한는 것이다. 또한 자연어 입력에서 창작자의 의도를 체계적 해석한다. 이를 통해 캐릭터 또는 객체가 정의되면 다양한 패널과 에피소드에서 정확하게 재사용해 시각적, 맥락적 무결성을 유지하게 한다. 이 접근 방식은 만화에서 캐릭터 묘사의 정확성과 일관성을 향상시켜 캐릭터와 장면이 원래 요구 사항과 밀접하게 일치시킨다. 따라서 본 연구에서 제안하는 방법은 자연어 텍스트에서 복잡한 시각적 콘텐츠의 재현이 필요한 다른 분야에서도 적용할 수 있을 것으로 기대된다.
인공지능기술은 사용자의 언어, 목소리 톤, 표정을 인지하고 학습하여 다양한 맥락에서 사용자의 감정에 대응할 수 있도록 발전하고 있다. 여러 인공지능 기반 서비스 중에서 특히 사용자와의 커뮤니케이션이 중요한 서비스 다수는 감정을 표현하는 인터랙션을 제공한다. 그러나 인공지능 시스템의 감정을 표현하는 수단으로서의 비언어적 인터랙션에 관한 연구는 아직 미비하다. 이에 조명효과 중 특히 색상과 깜빡임 운동을 중심으로 인공지능 디바이스의 감성 인터랙션을 연구하였다. 본 연구에서 구현한 인공지능 디바이스 프로토타입은 red, yellow, green, blue, purple, white 6가지의 조명 색상과 느림, 중간, 빠른 세 단계 속도의 깜빡임 효과로 감정을 표현한다. 프로토타입을 활용하여 20대부터 30대 남녀 50명을 대상으로 인공지능 디바이스의 색상별, 속도별 조명 효과가 표현하고 있는 감정에 응답하는 실험을 진행하였다. 실험 결과 각 조명 색상은 기존 색채감성연구에서 드러난 감성적 이미지와 대체로 유사한 감정을 나타내는 것으로 평가되었다. 조명의 깜빡임 속도는 감정의 각성과 밸런스의 변화에 영향을 주었으며, 이때 각성의 변화 양상은 모든 색상에서 유사한 기조를 보였다. 밸런스 변화 양상은 기존 색채감성연구의 감성적 이미지와 어느 정도 관련이 있지만 색상 별 차이가 있는 것으로 관찰되었다. 인공지능 시스템을 탑재한 사물의 종류와 인공지능 디바이스가 점점 다양해지는 현 시점에서, 본 연구결과는 조명을 통한 인공지능의 감성 인터랙션을 설계할 때 기여할 수 있을 것으로 기대된다.
최근 활성화 되고 있는 인슈어테크(InsurTech) 산업에서의 인공지능(AI)을 활용한 보험서비스 마케팅 사례연구를 통해, 보험산업 생태계에서 혁신적인 기술(예: 인공지능, 기계학습 등)이 어떻게 활용되고 있는지 살펴보았다. 특히, 국내·외 서비스 사례연구를 통해 인공지능기술을 활용하여 파괴적 혁신을 가져온 미국의 레모네이드(Lemonade)사의 챗봇을 이용한 신속하고, 간편한 보험가입 및 보험금 지급 서비스, 국내 AI컴퍼니의 광학 문자 인식(OCR)기반의 진단서 입력을 통해 예상 보험금이 산출되는 보험금 산정서비스를 고찰해 보았다. 사례분석 결과 인공지능 기반의 수많은 고객데이터를 활용한 기계학습을 통해 보험 가입 및 지급 절차에 있어 리드타임을 획기적으로 단축하였고, 고객과 보험사간의 분쟁이 많은 보험금 산정에 있어서도 정확하고 합리적인 보험금을 산출함으로써, 고객만족과 고객가치를 높일 수 있었다.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
/
pp.236-238
/
2006
An algorithm for detection of yellow sand aerosols has been developed with infrared bands from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-functional Transport Satellite-1 Replacement (MTSAT-1R) data. The algorithm is the hybrid algorithm that has used two methods combined together. The first method used the differential absorption in brightness temperature difference between $11{\mu}m$ and $12{\mu}m$ (BTD1). The radiation at 11 ${\mu}m$ is absorbed more than at 12 ${\mu}m$ when yellow sand is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The second method uses the brightness temperature difference between $3.7{\mu}m$ and $11{\mu}m$ (BTD2). The technique would be most sensitive to dust loading during the day when the BTD2 is enhanced by reflection of $3.7{\mu}m$ solar radiation. We have applied the three methods to MTSAT-1R for derivation of the yellow sand dust and in conjunction with the Principle Component Analysis (PCA), a form of eigenvector statistical analysis. As produced Principle Component Image (PCI) through the PCA is the correlation between BTD1 and BTD2, errors of about 10% that have a low correlation are eliminated for aerosol detection. For the region of aerosol detection, aerosol index (AI) is produced to the scale of BTD1 and BTD2 values over land and ocean respectively. AI shows better results for yellow sand detection in comparison with the results from individual method. The comparison between AI and OMI aerosol index (AI) shows remarkable good correlations during daytime and relatively good correlations over the land.
알파고로 촉발된 인공지능에 대한 국민의 관심이 고조되고 있다. 아직 국내에는 인공지능 분야에 대한 기술융합 맵 및 국가 프로파일에 대한 연구가 미진한 실정이다. 본 연구는 특허와 논문을 통해 인공지능 분야의 기술융합 현상을 밝히고, 인공지능 분야의 국가 프로파일을 분석하고자 하였다. 특허와 논문에서 인공지능 분야 데이터를 추출한 후 기술융합 맵을 작성하였다. KISTI가 보유한 SCOPUS 데이터를 이용해 국가 프로파일 분석에 필요한 지표를 구했다. 기술적 측면에서 인공지능 분야의 기술은 금융가격결정, 이미지분석, 수술 등 분야와 기술융합이 활발하게 나타났다. 학문적 측면에서 보면 인공지능 분야는 컴퓨터 과학 하위 분야에서 주로 연구되고 있지만 전기전자공학, 바이오 공학, 의학 등 분야와 융합이 활발하게 나타났다. 우리나라는 인공지능 분야에 대한 연구 성장도가 세계 평균인 것으로 나타났으며, 국가집중도, 영향력 등 측면에서는 주요국과 격차가 큰 것으로 나타났다.
본 연구는 인공지능 교육에 대한 연구 동향을 파악하는 것을 목적으로 2016년 이후 최근까지 발간된 '인공지능 교육'과 관련한 국내학술지논문 164건을 분석하였다. 논문 분석을 위한 준거는 연도별 논문수, 학술지명, 연구 주제, 연구 유형, 자료수집 방법, 연구 대상, 교과로 하였으며 주요 연구 분야와 추후 연구가 필요한 분야를 살펴보고자 하였다. 연구의 방법은 선정한 논문에 대해 주제와 요약을 중심으로 분석하되 불분명한 경우 본문을 확인하였다. 연구의 결과 '인공지능 교육'에 대한 연구는 2017년 이후 본격적으로 시작되었으며 최근 들어 급격하게 증가하는 경향을 보이고 있다. 분석결과 연구 주제에서는 인공지능 교육 프로그램과 콘텐츠 개발, 인공지능의 인식과 이미지에 대한 연구가 많은 편이었다. 연구의 유형에서는 양적연구가 많았고 자료수집 방법으로는 개발 연구 방식이 많이 사용되었다. 연구 대상에서는 초등학교가 비중이 높았으며 교과목에서는 인공지능 내용을 다루는 실과/기술 교과가 많은 것으로 나타났다.
본 연구는 인공지능 교육에 대한 연구 동향을 파악하는 것을 목적으로 2016년 이후 최근까지 발간된 '인공지능 교육'과 관련한 국내학술지논문 164건을 분석하였다. 논문 분석을 위한 준거는 연도별 논문수, 학술지명, 연구 주제, 연구 유형, 자료수집 방법, 연구 대상, 교과로 하였으며 주요 연구 분야와 추후 연구가 필요한 분야를 살펴보고자 하였다. 연구의 방법은 선정한 논문에 대해 주제와 요약을 중심으로 분석하되 불분명한 경우 본문을 확인하였다. 연구의 결과 '인공지능 교육'에 대한 연구는 2017년 이후 본격적으로 시작되었으며 최근 들어 급격하게 증가하는 경향을 보이고 있다. 분석결과 연구 주제에서는 인공지능 교육 프로그램과 콘텐츠 개발, 인공지능의 인식과 이미지에 대한 연구가 많은 편이었다. 연구의 유형에서는 양적연구가 많았고 자료수집 방법으로는 개발 연구 방식이 많이 사용되었다. 연구 대상에서는 초등학교가 비중이 높았으며 교과목에서는 인공지능 내용을 다루는 실과/기술 교과가 많은 것으로 나타났다.
International Journal of Internet, Broadcasting and Communication
/
제13권1호
/
pp.210-218
/
2021
CNN (Convolutional Neural Network), a type of deep learning algorithm, is a type of artificial neural network used to analyze visual images. In deep learning, it is classified as a deep neural network and is most commonly used for visual image analysis. Accordingly, an AI autonomous driving model was constructed through real-time image processing, and a crosswalk image of a road was used as an obstacle. In this paper, we proposed a low-cost model that can actually implement autonomous driving based on the CNN model. The most well-known deep neural network technique for autonomous driving is investigated and an end-to-end model is applied. In particular, it was shown that training and self-driving on a simulated road is possible through a practical approach to realizing lane detection and keeping.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.