• Title/Summary/Keyword: AI generation

Search Result 331, Processing Time 0.024 seconds

Development of Customized Textile Design using AI Technology -A Case of Korean Traditional Pattern Design-

  • Dawool Jung;Sung-Eun Suh
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.6
    • /
    • pp.1137-1156
    • /
    • 2023
  • With the advent of artificial intelligence (AI) during the Fourth Industrial Revolution, the fashion industry has simplified the production process and overcome the technical difficulties of design. This study anticipates likely changes in the digital age and develops a model that will allow consumers to design textile patterns using AI technology. Previous studies and industrial examples of AI technology's use in the textile design industry were investigated, and a textile pattern was developed using an AI algorithm. A new textile design model was then proposed based on its application to both virtual and physical clothing. Inspired by traditional Korean masks and props, AI technology was used to input color data from open application programming interface images. By inserting these into various repeating structures, a textile design was developed and simulated as garments for both virtual and real garments. We expect that this study will establish a new textile design development method for Generation Z, who favor customized designs. This study can inform the use of personalization in generative textile design as well as the systemization of technology-driven methods for customized and participatory textile design.

A Comparative Study on the Features and Applications of AI Tools -Focus on PIKA Labs and RUNWAY

  • Biying Guo;Xinyi Shan;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.86-91
    • /
    • 2024
  • In the field of artistic creation, the iterative development of AI-generated video software has pushed the boundaries of multimedia content creation and provided powerful creative tools for non-professionals. This paper extensively examines two leading AI-generated video software, PIKA Labs and RUNWAY, discussing their functions, performance differences, and application scopes in the video generation domain. Through detailed operational examples, a comparative analysis of their functionalities, as well as the advantages and limitations of each in generating video content, is presented. By comparison, it can be found that PIKA Labs and RUNWAY have excellent performance in stability and creativity. Therefore, the purpose of this study is to comprehensively elucidate the operating mechanisms of these two AI software, in order to intuitively demonstrate the advantages of each software. Simultaneously, this study provides valuable references for professionals and creators in the video production field, assisting them in selecting the most suitable tools for different scenarios, thereby advancing the application and development of AI-generated video software in multimedia content creation.

Development of 3D Printed Fashion Jewelry Design Using Generative AI (생성형 AI를 활용한 3D 프린팅 패션 주얼리 디자인 개발)

  • Bo Ae Hwang;Jung Soo Lee
    • Journal of Fashion Business
    • /
    • v.28 no.4
    • /
    • pp.129-148
    • /
    • 2024
  • With the advent of the 4th industrial era and the development of digital technologies such as artificial intelligence (AI), metaverse, 3D printing, and 3D virtual wearing systems, the fashion industry continues to attempt to use digital technology and introduce it into various areas. The purpose of this study was to determine whether fashion and digital technology could be combined to create works and to suggest ways to apply digital technology in the fashion industry. As a research method, image generative AI, Midjourney was applied to the initial design ideation stage to derive inspiration images. 3D printing technique was then introduced as a production method to print fashion jewelry. As a result of the research, a total of six jewelry designs printed with a 3D printer were developed. One necklace, one bracelet, three earrings, and one ring were developed. This study identified the possibility of applying digital technology to real fashion jewelry design products by designing jewelry based on inspirational images derived from image generation AI and producing pieces of fashion jewelry with 3D modeling tasks and 3D printing outputs. This study is significant in that it expands the expression area of fashion jewelry design that combines digital technology.

Research advances in reproduction for dairy goats

  • Luo, Jun;Wang, Wei;Sun, Shuang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1284-1295
    • /
    • 2019
  • Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future.

Intelligent AI-based Fine Dust Reduction Control System for Thermal Power Generation (지능형 AI기반의 미세먼지 저감 제어 시스템)

  • Lim, Sang-teak;Baek, Soon-chang;Song, Yong-jun;Baek, Yeong-tae;Choi, Cha-bong;Song, Seung-in
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.53-56
    • /
    • 2019
  • 본 논문에서는 화력을 이용하는 대형 파워 플랜트 설비의 미세먼지 발생량을 저감시키고 능동적으로 제어 할 수 있는 효율적인 시스템을 제안한다. 이 시스템은 기존의 고정형으로 설계된 집진기 방식의 고정부하량 한계점과 극복하고 초미세먼지 PM2.5, 미세먼지 PM10의 발생량에 따라 IoT센서 감지에 의해 지능형 알고리즘으로 효율적으로 저감 제어 처리량을 극대화하고, 미세먼지 발생량을 최소화한다. 또한 이 시스템의 차별성은 기존의 집진기에서 잡혀지지 않는 초미세먼지를 새로운 형태의 물질인 FAA(Fine-dust Adsorption Agent)를 통해 연료 연소 시 발생되는 초미세먼지 미세입자 자체를 크게 만들어 기존 설비 집진기 필터에 포집되게 하는 혁신적인 방식이다. 이번 연구를 통해 350도~1000도 열원에서 작용할 수 있는 화학물질 FAA 용액(Agent)을 개발 하였으며 지능형 AI 분사장치를 통해 연료에 첨가되어 연소 시 미세먼지를 20배~50배까지 볼륨을 확대시켜 기존 집진필터에 포집될 수 있게 동작된다. 이때, 기존 설계된 집진기의 한계(부하)용량에 상관없이 미세먼지 발생량을 상황인식 반응형 알고리즘(AI제어) 통해 분사량을 능동적으로 조절하여 미세먼지 발생량을 저감하는 진보적 혁신성을 지닌다.

  • PDF

Research on Core patent mining methods based on key components of Generative AI (생성형 인공지능 기술의 핵심 구성 요소 기반 주요 특허 발굴 방법에 관한 연구)

  • Gayun Kim;Beom-Seok Kim;Jinhong Yang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.292-300
    • /
    • 2023
  • This paper proposes a patent discovery method and strategy for Generative AI-related patents by utilizing qualitative evaluation indicators established based on the core components of the technology. Currently, the evaluation of patent quality relies on quantitative indicators, but existing quantitative indicators cannot represent the characteristics of Generative AI technology, making it difficult to accurately evaluate. Therefore, there is a need for additional qualitative indicators that consider technical characteristics based on patent claims, which can reveal the actual strength of the patent. In this paper, we propose a new evaluation index considering the technical characteristics of Generative AI. Core patents were selected using the proposed evaluation index, and the appropriateness of the proposed index was verified through the existing quantitative evaluation method for the selected core patents.

Case Analysis for the Emotional Communication Contents of New Silver Generation (뉴 실버세대의 감성 커뮤니케이션 콘텐츠 사례 분석)

  • Yun-Ji Jeong;Min-Seong Yu;Joo-Young Oh;Hyeon-Seok Hwang;Won-Whoi Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.23-28
    • /
    • 2024
  • This study focuses on investigating and exploring solutions to problems related to the increase in the elderly population in modern society where aging is rapidly progressing. With the advent of an aging society the elderly population requires more attention and support. In response companies are attempting to provide elder care services using AI and robotic technology. These services can assist seniors not only with health management and daily life care but also with emotional health aspects. This paper analyzes various elder-related technologies available in the current market investigates their pros and cons and potential for development. The paper concludes that companies need to develop and provide more AI and robot-based elder care services to solve aging problems. Such services can alleviate social and emotional issues in an aging society enhancing the quality of life for seniors.

A Graph-Agent-Based Approach to Enhancing Knowledge-Based QA with Advanced RAG (지식 기반 QA개선을 위한 Advanced RAG 시스템 구현 방법: Graph Agent 활용)

  • Cheonsu Jeong
    • Knowledge Management Research
    • /
    • v.25 no.3
    • /
    • pp.99-119
    • /
    • 2024
  • This research aims to develop high-quality generative AI services by overcoming the limitations of existing Retrieval-Augmented Generation (RAG) models and implementing an enhanced graph-based RAG system to improve knowledge-based question answering (QA) systems. While traditional RAG models demonstrate high accuracy and fluency by utilizing retrieved information, their accuracy can be compromised due to the use of pre-loaded knowledge without rework. Additionally, the inability to incorporate real-time data after the RAG configuration leads to a lack of contextual understanding and potential biased information. To address these limitations, this study implements an enhanced RAG system utilizing graph technology. This system is designed to efficiently search and utilize information. In particular, LangGraph is employed to evaluate the reliability of retrieved information and to generate more accurate and improved answers by integrating various information. Furthermore, the specific operation method, key implementation steps, and case studies are presented with implementation code and verification results to enhance understanding of Advanced RAG technology. This research provides practical guidelines for actively implementing enterprise services utilizing Advanced RAG, making it significant.

GAN-based research for high-resolution medical image generation (GAN 기반 고해상도 의료 영상 생성을 위한 연구)

  • Ko, Jae-Yeong;Cho, Baek-Hwan;Chung, Myung-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.544-546
    • /
    • 2020
  • 의료 데이터를 이용하여 인공지능 기계학습 연구를 수행할 때 자주 마주하는 문제는 데이터 불균형, 데이터 부족 등이며 특히 정제된 충분한 데이터를 구하기 힘들다는 것이 큰 문제이다. 본 연구에서는 이를 해결하기 위해 GAN(Generative Adversarial Network) 기반 고해상도 의료 영상을 생성하는 프레임워크를 개발하고자 한다. 각 해상도 마다 Scale 의 Gradient 를 동시에 학습하여 빠르게 고해상도 이미지를 생성해낼 수 있도록 했다. 고해상도 이미지를 생성하는 Neural Network 를 고안하였으며, PGGAN, Style-GAN 과의 성능 비교를 통해 제안된 모델이 양질의 고해상도 의료영상 이미지를 더 빠르게 생성할 수 있음을 확인하였다. 이를 통해 인공지능 기계학습 연구에 있어서 의료 영상의 데이터 부족, 데이터 불균형 문제를 해결할 수 있는 Data augmentation 이나, Anomaly detection 등의 연구에 적용할 수 있다.

Building a human rights corpus for interactive generation models (대화형 생성 모델을 위한 인권 코퍼스 구축)

  • Youngsook Song;angjin Sim;Seonghyun Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.571-576
    • /
    • 2023
  • 본 연구에서는 인권의 측면에서 AI 모델이 향상된 답변을 제시할 수 있는 방안을 모색하기 위해서 AI가 인권의 문제를 고민하는 전문가와 자신의 문제를 해결하고자 하는 사용자 사이에서 어느 정도로 도움을 줄 수 있는가를 정량적, 정성적으로 검증했다. 구체적으로는 국가인권위원회의 결정례와 상담사례를 분석한 후 이를 바탕으로 좀 더 나은 답변은 무엇인지에 대해 고찰하기 위해서 인권과 관련된 질의 응답 세트를 만든다. 질의 응답 세트는 인권 코퍼스를 학습한 모델과 그렇지 않은 모델의 생성 결과를 바탕으로 한다. 또한 생성된 질의 응답 세트를 바탕으로 설문을 실시하여 전문적인 내용을 담은 문장에 대한 선호도를 분석한다. 본 논문은 대화형 생성 모델이 인권과 관련된 주제에 대해서도 선호되는 답변을 제시할 수 있는가에 대한 하나의 대안이 될 수 있을 것이다.

  • PDF