• Title/Summary/Keyword: AI frequency

Search Result 265, Processing Time 0.03 seconds

A layer-wise frequency scaling for a neural processing unit

  • Chung, Jaehoon;Kim, HyunMi;Shin, Kyoungseon;Lyuh, Chun-Gi;Cho, Yong Cheol Peter;Han, Jinho;Kwon, Youngsu;Gong, Young-Ho;Chung, Sung Woo
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.849-858
    • /
    • 2022
  • Dynamic voltage frequency scaling (DVFS) has been widely adopted for runtime power management of various processing units. In the case of neural processing units (NPUs), power management of neural network applications is required to adjust the frequency and voltage every layer to consider the power behavior and performance of each layer. Unfortunately, DVFS is inappropriate for layer-wise run-time power management of NPUs due to the long latency of voltage scaling compared with each layer execution time. Because the frequency scaling is fast enough to keep up with each layer, we propose a layerwise dynamic frequency scaling (DFS) technique for an NPU. Our proposed DFS exploits the highest frequency under the power limit of an NPU for each layer. To determine the highest allowable frequency, we build a power model to predict the power consumption of an NPU based on a real measurement on the fabricated NPU. Our evaluation results show that our proposed DFS improves frame per second (FPS) by 33% and saves energy by 14% on average, compared with DVFS.

Effect of Artificial Insemination Frequency on Reproductive Performance in Sows (인공수정 횟수가 모돈의 번식성적에 미치는 영향)

  • Hong, Jin-su;Jin, Song-san;Fang, Lin-hu;Kim, Yoo-yong
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.183-188
    • /
    • 2016
  • This experiment was conducted to investigate the effects of artificial insemination(AI) frequency on reproductive performance of sows. A total of 48 F1 sows(Yorkshire×Landrace) were allocated to 1 of 4 treatments using completely randomized design(CRD). Four experimental treatments were AI frequency from one to four times(AI1, AI2, AI3, AI4) respectively. Estrus detection was done at approximately 09:00 and 21:00 daily by applying back pressure to females with the presence of a mature boar and the weaning to estrus interval(WEI) of all sows were 5~6 day. Sows detected in estrus were mated at 12 hour after and mating interval was 12 hour by treatments. This experiment demonstrated that the lowest farrowing rate was observed AI3 treatment. Frequency of AI did not influence on reproductive performance when WEI was 5-6 day. No significant differences were observed on litter size, born alive and litter birth weight. Consequently, decreased AI frequency did not have any detrimental effect on reproductive performance when estrus detection was adequate. Decreased AI frequency could reduce cost of production of pigs when sows showed normal reproductive performance.

Design for a Dual-Frequency Antenna-in-Package

  • Li, Li;Han, Liping;Han, Guorui;Chen, Xinwei;Geng, Yanfeng;Zhang, Wenmei
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.614-617
    • /
    • 2010
  • For an antenna-in-package (AiP), via holes are used to connect the antenna ground and system ground. In this letter, a dual-frequency AiP with a U-slot embedded in the patch is proposed. By properly arranging three via holes under the non-radiating edge, an AiP with two resonant frequencies is realized. Then a U-slot is embedded in the patch to further improve the bandwidth of the AiP. To validate the proposed design, an AiP with the bandwidth of 4.49% at 2.45 GHz and 6.02% at 5.32 GHz is achieved and fabricated. The measured results agree with the simulated results.

Happy Applicants Achieve More: Expressed Positive Emotions Captured Using an AI Interview Predict Performances

  • Shin, Ji-eun;Lee, Hyeonju
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.75-80
    • /
    • 2021
  • Do happy applicants achieve more? Although it is well established that happiness predicts desirable work-related outcomes, previous findings were primarily obtained in social settings. In this study, we extended the scope of the "happiness premium" effect to the artificial intelligence (AI) context. Specifically, we examined whether an applicant's happiness signal captured using an AI system effectively predicts his/her objective performance. Data from 3,609 job applicants showed that verbally expressed happiness (frequency of positive words) during an AI interview predicts cognitive task scores, and this tendency was more pronounced among women than men. However, facially expressed happiness (frequency of smiling) recorded using AI could not predict the performance. Thus, when AI is involved in a hiring process, verbal rather than the facial cues of happiness provide a more valid marker for applicants' hiring chances.

Exploring the Key Factors that Lead to Intentions to Use AI Fashion Curation Services through Big Data Analysis

  • Shin, Eunjung;Hwang, Ha Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.676-691
    • /
    • 2022
  • An increasing number of companies in the fashion industry are using AI curation services. The purpose of this study is to investigate perceptions of and intentions to use AI fashion curation services among customers by using text mining. To accomplish this goal, we collected a total of 34,190 online posts from two Korean portals, Naver and Daum. We conducted frequency analysis to identify the most frequently mentioned keywords using Textom. The analysis extracted "various," "good," "many," "right," and "new" at the highest frequency, indicating that consumers had positive perceptions of AI fashion curation services. In addition, we conducted a semantic network analysis with the top-50 most frequently used keywords, classifying customers' perceptions of AI fashion curation services into three groups: shopping, platform, and business profit. We also identified the factors that boost continuous use intentions: usability, usefulness, reliability, enjoyment, and personalization. We conclude this paper by discussing the theoretical and practical implications of these findings.

A Study on Factors Influencing AI Learning Continuity : Focused on Business Major Students

  • Park, So Hyun
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.189-210
    • /
    • 2023
  • Purpose This study aims to investigate factors that positively influence the continuous Artificial Intelligence(AI) Learning Continuity of business major students. Design/methodology/approach To evaluate the impact of AI education, a survey was conducted among 119 business-related majors who completed a software/AI course. Frequency analysis was employed to examine the general characteristics of the sample. Furthermore, factor analysis using Varimax rotation was conducted to validate the derived variables from the survey items, and Cronbach's α coefficient was used to measure the reliability of the variables. Findings Positive correlations were observed between business major students' AI Learning Continuity and their AI Interest, AI Awareness, and Data Analysis Capability related to their majors. Additionally, the study identified that AI Project Awareness and AI Literacy Capability play pivotal roles as mediators in fostering AI Learning Continuity. Students who acquired problem-solving skills and related technologies through AI Projects Awareness showed increased motivation for AI Learning Continuity. Lastly, AI Self-Efficacy significantly influences students' AI Learning Continuity.

Determination of High-pass Filter Frequency with Deep Learning for Ground Motion (딥러닝 기반 지반운동을 위한 하이패스 필터 주파수 결정 기법)

  • Lee, Jin Koo;Seo, JeongBeom;Jeon, SeungJin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.183-191
    • /
    • 2024
  • Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.

The Impact of Generative AI's Technical Characteristics and Librarians' Personal Traits on Intention to Use Generative AI (생성형 AI의 기술적 특성과 사서의 개인적 특성이 생성형 AI 사용의도에 미치는 영향)

  • Seonghee Kim;Seung Min Lee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.35 no.2
    • /
    • pp.109-133
    • /
    • 2024
  • This study investigated the impact of the technical characteristics of Generative AI (GAI) and librarians' personal traits on their intention to use GAI. Personalization, interaction, and context awareness were considered as technical characteristics of GAI that influence the intention to use GAI, while innovativeness and frequency of GAI use were considered as librarians' personal traits. The study targeted 187 librarians working in libraries, and 165 questionnaires were collected and analyzed. The results showed that the technical characteristics of GAI had a statistically significant impact on the intention to use GAI. Additionally, librarians' personal traits, namely innovativeness and frequency of GAI use, were also found to have a significant impact on the intention to use GAI. The findings of this study can be used as valuable information to help librarians increase their intention to use GAI and improve the quality and satisfaction of library services.

Web Attack Classification via WAF Log Analysis: AutoML, CNN, RNN, ALBERT (웹 방화벽 로그 분석을 통한 공격 분류: AutoML, CNN, RNN, ALBERT)

  • Youngbok Jo;Jaewoo Park;Mee Lan Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.587-596
    • /
    • 2024
  • Cyber Attack and Cyber Threat are getting confused and evolved. Therefore, using AI(Artificial Intelligence), which is the most important technology in Fourth Industry Revolution, to build a Cyber Threat Detection System is getting important. Especially, Government's SOC(Security Operation Center) is highly interested in using AI to build SOAR(Security Orchestration, Automation and Response) Solution to predict and build CTI(Cyber Threat Intelligence). In this thesis, We introduce the Cyber Threat Detection System by analyzing Network Traffic and Web Application Firewall(WAF) Log data. Additionally, we apply the well-known TF-IDF(Term Frequency-Inverse Document Frequency) method and AutoML technology to classify Web traffic attack type.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.