• Title/Summary/Keyword: AI education content

Search Result 130, Processing Time 0.024 seconds

The Core Concepts of Mathematics for AI and An Analysis of Mathematical Contents in the Textbook (수학과 인공지능(AI) 핵심 개념과 <인공지능 수학> 내용 체계 분석)

  • Kim, Changil;Jeon, Youngju
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.4
    • /
    • pp.391-405
    • /
    • 2021
  • In this study, 'data collection', 'data expression', 'data analysis, and 'optimization and decision-making' were selected as the core AI concepts to be dealt with in the mathematics for AI education. Based on this, the degree of reflection of AI core concepts was investigated and analyzed compared to the mathematical core concepts and content of each area of the elective course. In addition, the appropriateness of the content of was examined with a focus on core concepts and related learning contents. The results provided some suggestions for answering the following four critical questions. First, How to set the learning path for ? Second, is it necessary to discuss the redefinition of the nature of ? Third, is it appropriate to select core concepts and terms for ? Last, is it appropriate to present the relevant learning contents of the content system of ?

Understanding Elementary School Teachers' Intention to Use Artificial Intelligence in Mathematics Lesson Using TPACK and Technology Acceptance Model (TPACK과 기술수용모델을 활용한 초등교사의 수학 수업에서 인공지능 사용 의도 이해)

  • Son, Taekwon;Goo, Jongseo;Ahn, Doyeon
    • Education of Primary School Mathematics
    • /
    • v.26 no.3
    • /
    • pp.163-180
    • /
    • 2023
  • This study aimed to investigate the factors influencing the intentions of elementary school teachers to use artificial intelligence (AI) in mathematics lessons and to identify the essential prerequisites for the effective implementation of AI in mathematics education. To achieve this purpose, we examined the structural relationship between elementary school teachers' TPACK(Technological Pedagogical Content Knowledge) and the TAM(Technology Acceptance Model) using structural equation model. The findings of the study indicated that elementary school teachers' TPACK regarding the use of AI in mathematics instruction had a direct and significant impact on their perceived ease of use and perceived usefulness of AI. In other words, when teachers possessed a higher level of TPACK competency in utilizing AI in mathematics classes, they found it easier to incorporate AI technology and recognized it as a valuable tool to enhance students' mathematics learning experience. In addition, perceived ease of use and perceived usefulness directly influenced the attitudes of elementary school teachers towards the integration of AI in mathematics education. When teachers perceived AI as easy to use in their mathematics lessons, they were more likely to recognize its usefulness and develop a positive attitude towards its application in the classroom. Perceived ease of use, perceived usefulness, and attitude towards AI integration in mathematics classes had a direct impact on the intentions of elementary school teachers to use AI in their mathematics instruction. As teachers perceived AI as easy to use, valuable, and developed a positive attitude towards its incorporation, their intention to utilize AI in mathematics education increased. In conclusion, this study shed light on the factors influencing elementary school teachers' intentions to use AI in mathematics classes. It revealed that teachers' TPACK plays a crucial role in facilitating the integration of AI in mathematics education. Additionally, the study emphasized the significance of enhancing teachers' awareness of the advantages and convenience of using AI in mathematics instruction to foster positive attitudes and intentions towards its implementation. By understanding these factors, educational stakeholders can develop strategies to effectively promote the utilization of AI in mathematics education, ultimately enhancing students' learning outcomes.

Development of Instructional Design Model and Checklist for AI Education (인공지능교육을 위한 수업설계모형 및 체크리스트 개발)

  • Kim, So-yeon;Cho, Seo-yeon;Kang, Shinchun;Lee, Eun-sang;Im, Tami
    • Journal of Engineering Education Research
    • /
    • v.25 no.6
    • /
    • pp.81-92
    • /
    • 2022
  • The purpose of this paper was to develop an instructional design model and checklist for AI education. Literature review was conducted to derive the structure of the instructional design model. And delphi survey was conducted twice to revise and improve the elements & items of the instructional design model and checklist and to confirm the content validity of both instructional design model and the checklist. As a result, an instructional design model consisting of three main steps(Analysis - Design & Development - Implementation & Evaluation) was suggested with a detail checklist which explained what teachers need to do in each step of this instructional development model when they prepare AI education using this instructional design model. Limitations and suggestions for further studies were presented at the end of this paper.

Review on Artificial Intelligence Education for K-12 Students and Teachers (K-12 학생 및 교사를 위한 인공지능 교육에 대한 고찰)

  • Kim, Soohwan;Kim, Seonghun;Lee, Minjeong;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • The purpose of this study is to propose the direction of AI education in K-12 education through investigating and analyzing aspects of the purpose, content, and methods of AI education as the curriculum and teacher training factors. We collected and analyzed 9 papers as the primary literature and 11 domestic and foreign policy reports as the secondary literature. The collected literatures were analyzed by applying a descriptive reviews, and the implications were derived by analyzing the curriculum components and TPACK elements for multi-dimensional analysis. As a result of this study, AI education targets were divided into three steps: AI users, utilizer, and developers. In K-12 education, the user and utilizer stages are appropriate, and artificial intelligence literacy must be included for user education. Based on the current computing thinking ability and coding ability for utilizer education, the implication was derived that it is necessary to target the ability to create creative output by applying the functions of artificial intelligence. In addition to the pedagogical knowledge and the ability to use the platform, The teacher training is necessary because teachers need content knowledge such as problem-solving, reasoning, learning, perception, and some applied mathematics, cognitive / psychological / ethical of AI.

Development of a Game Content Based on Metaverse Providing Decision Tree Algorithm Education for Middle School Students (중학생을 위한 의사결정나무 알고리즘 교육을 제공하는 메타버스 기반 게임 콘텐츠 개발)

  • Hyun, Subin;Kim, Yujin;Park, Chan Jung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.106-117
    • /
    • 2022
  • In 2021, AI basics were introduced in the high school curriculum. There are many worries that the problem of utilization-oriented education will be repeated with the introduction of artificial intelligence education rather than the principles that occurred when ICT was applied to education in the past. Most of the existing AI education platforms focus only on the use of AI. For artificial intelligence education of middle school students, there are difficulties in learning about the process by which artificial intelligence derives results and learning the principles of artificial intelligence algorithms. Recently, as the educational application of metaverse has become a hot topic, research has been started to improve learning achievement by arousing students' immersion and interest. This research developed educational game contents about decision tree algorithm using metaverse as educational contents that can be used in middle school AI education. By applying games to education, it was intended to increase students' interest and immersion in artificial intelligence, and to increase educational effectiveness. In this paper, the educational effectiveness, difficulty, and level of interest were analyzed for pre-service teachers regarding the developed game content. Based on this, a future principle-oriented artificial intelligence education method was suggested.

An Analysis of Students' Experiences Using the Block Coding Platform KNIME in a Science-AI Convergence Class at a Science Core High School (과학중점학교 학생의 블록코딩 플랫폼 KNIME을 활용한 과학-AI 융합 수업 경험 분석)

  • Uijeong Hong;Eunhye Shin;Jinseop Jang;Seungchul Chae
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.2
    • /
    • pp.141-153
    • /
    • 2024
  • The 2022 revised science curriculum aims to develop the ability to solve scientific problems arising in daily life and society based on convergent thinking stimulated through participation in research activities using artificial intelligence (AI). Therefore, we developed a science-AI convergence education program that combines the science curriculum with artificial intelligence and employed it in convergence classes for high school students. The aim of the science-AI convergence class was for students to qualitatively understand the movement of a damped pendulum and build an AI model to predict the position of the pendulum using the block coding platform KNIME. Individual in-depth interviews were conducted to understand and interpret the learners' experiences. Based on Giorgi's phenomenological research methodology, we described the learners' learning processes and changes, challenges and limitations of the class. The students collected data and built the AI model. They expected to be able to predict the surrounding phenomena based on their experimental results and perceived the convergence class positively. On the other hand, they still perceived an with the unfamiliarity of platform, difficulty in understanding the principle of AI, and limitations of the teaching method that they had to follow, as well as limitations of the course content. Based on this, we discussed the strengths and limitations of the science-AI convergence class and made suggestions for science-AI convergence education. This study is expected to provide implications for developing science-AI convergence curricula and implementing them in the field.

A Study of the Definition and Components of Data Literacy for K-12 AI Education (초·중등 AI 교육을 위한 데이터 리터러시 정의 및 구성 요소 연구)

  • Kim, Seulki;Kim, Taeyoung
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.691-704
    • /
    • 2021
  • The development of AI technology has brought about a big change in our lives. The importance of AI and data education is also growing as AI's influence from life to society to the economy grows. In response, the OECD Education Research Report and various domestic information and curriculum studies deal with data literacy and present it as an essential competency. However, the definition of data literacy and the content and scope of the components vary among researchers. Thus, we analyze the semantic similarity of words through Word2Vec deep learning natural language processing methods along with the definitions of key data literacy studies and analysis of word frequency utilized in components, to present objective and comprehensive definition and components. It was revised and supplemented by expert review, and we defined data literacy as the 'basic ability of knowledge construction and communication to collect, analyze, and use data and process it as information for problem solving'. Furthermore we propose the components of each category of knowledge, skills, values and attitudes. We hope that the definition and components of data literacy derived from this study will serve as a good foundation for the systematization and education research of AI education related to students' future competency.

Development and Application of an Artificial Intelligence Convergence Education Program Linked to School Library Reading Activities for Middle School Students (중학생을 위한 학교도서관의 독서활동 연계 인공지능 융합교육 프로그램의 개발과 적용)

  • Yonju No;Ji Won You
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.1
    • /
    • pp.439-463
    • /
    • 2024
  • Recently, there has been a growing demand for school libraries to take on the role of curriculum convergence and content development. This study purposed to develop a program that integrates reading activities and artificial intelligence (AI) education in a middle school library as a platform for convergence education. The program aimed to enhance creative problem-solving skills by integrating an understanding of AI concepts and principles through reading activities related to AI topics. The program, comprising 18 sessions (6 modules), was implemented with 36 first-year students at A Middle School, Gyeonggi-do, in 2022. After implementation, a paired-sample t-test revealed significant improvements in AI learning self-efficacy and creative problem-solving skills. Participants also showed positive attitudes toward class engagement and reading activities. Implications for AI convergence education in connection with school libraries were discussed.

A comparative study of the revised 2022 Korea mathematics curriculum and the international baccalaureate diploma program mathematics: Applications and interpretation standard level - focusing on high school statistics area

  • Soo Bin Lee;Ah Ra Cho;Oh Nam Kwon
    • Research in Mathematical Education
    • /
    • v.27 no.1
    • /
    • pp.49-73
    • /
    • 2024
  • This study aims to explore the direction of high school statistics education in Korea through a comparative analysis between the revised 2022 Korea mathematics curriculum and the IBDP Mathematics: Application & Interpretation Standard Level (IBDP AI SL) Curriculum and textbooks. The study seeks to investigate the Statistics unit of the two curricula, compare chapter structures and content elements of textbooks, and explore exercises on modeling and utilization of technology tools. The results are as follows: First, the IBDP AI SL statistics covered a broader range of topics. Second, exercises in Korean high school textbooks typically inquire about one or two questions in each topic, whereas the IBDP AI SL textbook's exercises present a real-life scenario on all relevant topics through sub-questions. Third, the Korean textbook guides the utilization of technology tools only in exercises presented after completing the entire chapter or where the calculation is complex. Also, there were only a handful of modeling exercises in the Korean textbook in contrast to most of the lessons and exercises were modeling exercises in the IBDP AI SL textbook. If these findings can be integrated into teaching practices in Korea, it will provide a direction for statistics education in Korean high schools.

Development of Digital and AI Teaching-learning Strategies Based on Computational Thinking for Enhancing Digital Literacy and AI Literacy of Elementary School Student (초등학생의 디지털·AI 리터러시 함양을 위한 컴퓨팅 사고력 기반 교수·학습 전략 개발)

  • Ji-Yeon Hong;Yungsik Kim
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.341-352
    • /
    • 2022
  • The wave of a knowledge and information society led by AI, Big Data, and so on is having an all-round impact on our way of life. Therefore the Ministry of Education is in a hurry to strengthen Digital Literacy, including AI and SW Education, by improving the curriculum that can cultivate basic knowledge and capabilities to respond to changes in the future society. It can be seen that establishing a foundation for cultivating Digital Literacy through all subjects and improving basic and in-depth learning in new technology fields such as AI linked to the information curriculum is an essential part for future society. However, research on each content for cultivating Digital and AI literacy is relatively active, while research on teaching and learning strategies is insufficient. Therefore in this study, a CT-based Digital and AI teaching and learning strategy that can foster that was developed and Delphi expert verification was conducted, and the final teaching and learning strategy was completed after evaluating instructor usability and analyzing learner effectiveness.