Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.136-136
/
2021
In this study, a deep convolutional neural network (DCNN) model is proposed for short-term precipitation forecasting using weather radar-based images. The DCNN model is a combination of convolutional neural networks, autoencoder neural networks, and U-net architecture. The weather radar-based image data used here are retrieved from competition for rainfall forecasting in Korea (AI Contest for Rainfall Prediction of Hydroelectric Dam Using Public Data), organized by Dacon under the sponsorship of the Korean Water Resources Association in October 2020. This data is collected from rainy events during the rainy season (April - October) from 2010 to 2017. These images have undergone a preprocessing step to convert from weather radar data to grayscale image data before they are exploited for the competition. Accordingly, each of these gray images covers a spatial dimension of 120×120 pixels and has a corresponding temporal resolution of 10 minutes. Here, each pixel corresponds to a grid of size 4km×4km. The DCNN model is designed in this study to provide 10-minute predictive images in advance. Then, precipitation information can be obtained from these forecast images through empirical conversion formulas. Model performance is assessed by comparing the Score index, which is defined based on the ratio of MAE (mean absolute error) to CSI (critical success index) values. The competition results have demonstrated the impressive performance of the DCNN model, where the Score value is 0.530 compared to the best value from the competition of 0.500, ranking 16th out of 463 participating teams. This study's findings exhibit the potential of applying the DCNN model to short-term rainfall prediction using weather radar-based images. As a result, this model can be applied to other areas with different spatiotemporal resolutions.
Recently IoT(Internet of Things) service industry has grown very rapidly. In this paper, we investigated the changes in IoT service industry as well as new direction of human life in future global society. Under these changing market conditions, competition has been also changed into global and ecological competition. But compared to the platform initiatives and ecological strategies of global companies, Korean companies' vision of building ecosystems is still unclear. In addition, there is a need of internetworking between mobile and IoT services. IoT security Protocol has weakness of leaking out information from Gateway which connected wire and wireless communication. As such, we investigate the structure of IoT and AI service ecosystem in order to gain strategic implications and insights for the security industry in this paper.
Tourism and hospitality have encountered significant changes in recent years as a result of the rapid development of information technology (IT). Customers now expect more expedient services and customized travel experiences, which has intensified competition among service providers. To meet these demands, businesses have adopted sophisticated IT applications such as ChatGPT, which enables real-time interaction with consumers and provides recommendations based on their preferences. This paper focuses on the AI support-prompt middleware system, which functions as a mediator between generative AI and human users, and discusses two operational rules associated with it. The first rule is the Information Processing Rule, which requires the middleware system to determine appropriate responses based on the context of the conversation using techniques for natural language processing. The second rule is the Information Presentation Rule, which requires the middleware system to choose an appropriate language style and conversational attitude based on the gravity of the topic or the conversational context. These rules are essential for guaranteeing that the middleware system can fathom user intent and respond appropriately in various conversational contexts. This study contributes to the planning and analysis of service design by deriving design rules for middleware systems to incorporate artificial intelligence into tourism services. By comprehending the operation of AI support-prompt middleware systems, service providers can design more effective and efficient AI-driven tourism services, thereby improving the customer experience and obtaining a market advantage.
The Journal of the Convergence on Culture Technology
/
v.8
no.3
/
pp.405-413
/
2022
Since the COVID-19 outbreak, the active utilization of new health care service utilizing the ICT technology and data science such as telemedicine, smart hospital, AI dignosis has been increasingly found. In this study we examined the business model of Amazon healthcare which leads disruptive innovation in U.S. health care industry with the introduction of hybrid model of telemedicin, in-person care and customer-centric online drug delivery, home-use diagnostic kit, characterized by the integrated model combining medical care, drug delivery and the use of diagnostic kit. We showed using the multiproduct competition model that the synergy effect between the Amazon's original business areas and the healthcare business area causes the active market penetration and the increase in the customer value from utilization of the Amazon care. Using Hotelling's spatial competition model, we also showed that the competition in the health care market can be greater when consumer's choice of health care providers are available in telemedicine platform. In the long, run the issue of competition being weakened due to the exit of less competent healthcare providers may arise, to which the policymakers in the charge of fair competition in health care industry should pay attention.
Journal of the Korea Society of Computer and Information
/
v.23
no.7
/
pp.105-111
/
2018
Last March, the world Go competition between AlphaGo, AI Go program developed by Google Deep Mind and professional Go player Lee Sedol has shown us that the 4th industrial revolution using AI has come close. Especially, there ar many system combined with AI hae been developing including program for researching legal information, system for expecting jurisdiction, and processing big data, there is saying that even AI legal person is ready for its appearance. As legal field is mostly based on text-based document, such characteristic makes it easier to adopt artificial intelligence technology. When a legal person receives a case, the first thing to do is searching for legal information and judical precedent, which is the one of the strength of AI. It is very difficult for a human being to utilize a flow of legal knowledge and figures by analyzing them but for AI, this is nothing but a simple job. The ability of AI searching for regulation, precedent, and literature related to legal issue is way over our expectation. AI is evaluated to be able to review 1 billion pages of legal document per second and many people agree that lot of legal job will be replaced by AI. Along with development of AI service, legal service is becoming more advanced and if it devotes to ethical solving of legal issues, which is the final goal, not only the legal field but also it will help to gain nation's trust. If nations start to trust the legal service, it would never be completely replaced by AI. What is more, if it keeps offering advanced, ethical, and quick legal service, value of law devoting to the society will increase and finally, will make contribution to the nation. In this time where we have to compete with AI, we should try hard to increase value of traditional legal service provided by human. In the future, priority of good legal person will be his/her ability to use AI. The only field left to human will be understanding and recovering emotion of human caused by legal problem, which cannot be done by AI's controlling function. Then, what would be the attitude of legal people in this period? It would be to learn the new technology and applying in the field rather than going against it, this will be the way to survive in this new AI period.
As the AI speaker market is growing rapidly in recent years, the competition for the preoccupation of children who are the main users and the future prospective customers of the related companies is very intense. However, there is a lack of empirical research on how children interact with AI speakers. Therefore, this research examines the interactions between children and AI speakers, primarily through field studies, to extract what functions they use and what features they have. For this purpose, 799 conversations were collected and analyzed using the log data of the AI speaker recorded in real time. As a result, children were more likely to use children's songs, fairy tales, emotional conversations, and personification compared to adults. In addition, content analysis by specific types resulted in success/failure cases of interaction between children and AI speakers and proposed improvements by failure type. This study is meaningful in that it identifies children's AI speaker preferences, content, and major conversation patterns, and provides guidelines for developing services that meet children's eye level.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.19
no.2
/
pp.215-235
/
2024
As artificial intelligence (AI) technology is recognized as a key technology that will determine future national competitiveness, competition for AI technology and industry promotion policies in major countries is intensifying. This study aims to present implications for domestic policy making by analyzing the policies of major countries on the start-up of AI companies, which are the basis of the AI industry ecosystem. The top four countries and the EU for the number of new investment attraction companies in the 2023 AI Index announced by the HAI Research Institute at Stanford University in the United States were selected, The United States enacted the National AI Initiative Act (NAIIA) in 2021. Through this law, The US Government is promoting continued leadership in the United States in AI R&D, developing reliable AI systems in the public and private sectors, building an AI system ecosystem across society, and strengthening DB management and access to AI policies conducted by all federal agencies. In the 14th Five-Year (2021-2025) Plan and 2035 Long-term Goals held in 2021, China has specified AI as the first of the seven strategic high-tech technologies, and is developing policies aimed at becoming the No. 1 AI global powerhouse by 2030. The UK is investing in innovative R&D companies through the 'Future Fund Breakthrough' in 2021, and is expanding related investments by preparing national strategies to leap forward as AI leaders, such as the implementation plan of the national AI strategy in 2022. Israel is supporting technology investment in start-up companies centered on the Innovation Agency, and the Innovation Agency is leading mid- to long-term investments of 2 to 15 years and regulatory reforms for new technologies. The EU is strengthening its digital innovation hub network and creating the InvestEU (European Strategic Investment Fund) and AI investment fund to support the use of AI by SMEs. This study aims to contribute to analyzing the policies of major foreign countries in making AI company start-up policies and providing a basis for Korea's strategy search. The limitations of the study are the limitations of the countries to be analyzed and the failure to attempt comparative analysis of the policy environments of the countries under the same conditions.
Son Joon-Sik;Lee Duk-Man;Kim Ill-Soo;Choi Seung-Gap
Transactions of the Korean Society of Machine Tool Engineers
/
v.14
no.1
/
pp.52-57
/
2005
In the foe of global competition, the requirements for the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties) have imposed a mai or change on steel manufacturing industries. Indeed, one of the keys to achieve this goal is the automation of the steel-making process using AI(Artificial Intelligence) techniques. The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved. In this paper, an on-line training neural network for both long-term teaming and short-term teaming was developed in order to improve the prediction of rolling force in hot rolling mill. This analysis shows that the predicted rolling force is very closed to the actual rolling force, and the thickness error of the strip is considerably reduced.
Journal of Korean Society of Industrial and Systems Engineering
/
v.42
no.2
/
pp.86-93
/
2019
The population of domestic companion animals is estimated to be about 10 million now. In recent years, the domestic pet market has been launching a wide range of products and services for high quality, smart and well-being. As a result, the market size will increase from 900 billion won in 2012 to 2.3 trillion won in 2016, which has more than doubled in five years. The industry expects to reach 6 trillion won by 2020, expecting 3 trillion won this year. In particular, domestic dogs and cats market is estimated at 275.5 billion won, accounting for 19% of the domestic animal market and 1.425 billion won for the world market. However, despite the growing market for companion animals products, unfortunately the import dependence on related industrial goods is still high and the quality of service is very low. Unlike Europe and the United States, 90% of companion animals are housed in apartments, often causing problems in the health and safety of companions and companions. The purpose of this study is to develop a smart house for companion animals with environmental friendliness and AI function that can be won in competition with products of developed countries. The results of this study are expected to contribute to the creation of a new value - added base for the related industries through the strengthening of the competitiveness of the related SMEs and further the effect of employment increase and import substitution.
Katie Lawther;Fernanda Godoy Santos;Linda B Oyama;Sharon A Huws
Animal Bioscience
/
v.37
no.2_spc
/
pp.337-345
/
2024
Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.