• Title/Summary/Keyword: AI Major

Search Result 483, Processing Time 0.029 seconds

Development of Convolutional Neural Network Basic Practice Cases (합성곱 신경망 기초 실습 사례 개발)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.279-285
    • /
    • 2022
  • In this paper, as a liberal arts course for non-majors, we developed a basic practice case for convolutional neural networks, which is essential for designing a basic convolutional neural network course curriculum. The developed practice case focuses on understanding the working principle of the convolutional neural network and uses a spreadsheet to check the entire visualized process. The developed practice case consisted of generating supervised learning method image training data, implementing the input layer, convolution layer (convolutional layer), pooling layer, and output layer sequentially, and testing the performance of the convolutional neural network on new data. By extending the practice cases developed in this paper, the number of images to be recognized can be expanded, or basic practice cases can be made to create a convolutional neural network that increases the compression rate for high-quality images. Therefore, it can be said that the utility of this convolutional neural network basic practice case is high.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Gradient Descent Training Method for Optimizing Data Prediction Models (데이터 예측 모델 최적화를 위한 경사하강법 교육 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.305-312
    • /
    • 2022
  • In this paper, we focused on training to create and optimize a basic data prediction model. And we proposed a gradient descent training method of machine learning that is widely used to optimize data prediction models. It visually shows the entire operation process of gradient descent used in the process of optimizing parameter values required for data prediction models by applying the differential method and teaches the effective use of mathematical differentiation in machine learning. In order to visually explain the entire operation process of gradient descent, we implement gradient descent SW in a spreadsheet. In this paper, first, a two-variable gradient descent training method is presented, and the accuracy of the two-variable data prediction model is verified by comparison with the error least squares method. Second, a three-variable gradient descent training method is presented and the accuracy of a three-variable data prediction model is verified. Afterwards, the direction of the optimization practice for gradient descent was presented, and the educational effect of the proposed gradient descent method was analyzed through the results of satisfaction with education for non-majors.

A Cognitive-social Model for Risk Perception of Terrorism (테러 위험지각의 인지-사회 모형)

  • Hyunju Lee ;Young-Ai Lee
    • Korean Journal of Culture and Social Issue
    • /
    • v.17 no.4
    • /
    • pp.485-503
    • /
    • 2011
  • This study was to develope a structural model for risk perception and individual response against terrorism, including several psychological factors - cognitive, social and emotional factors. In this model we measured perceived probability of terrorism, perceived seriousness of the aftermath, and perceived coping(cognitive factors), trust in authorities, in expert group and in preparedness of institutions(social factors), fear and worry(emotional factors), individual preparedness, information seeking, information analysis, and checking relational network(individual behavior responses). Major finding was that cognitive and social factors influenced on emotional factors and then emotional factors influenced on the individual responses. The perceived coping, which one of cognitive factors was linked with individual responses directly and indirectly via emotion factors. We discussed the importance of perceived coping in preparing for terrorism.

  • PDF

A Proposal of Evaluation of Large Language Models Built Based on Research Data (연구데이터 관점에서 본 거대언어모델 품질 평가 기준 제언)

  • Na-eun Han;Sujeong Seo;Jung-ho Um
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.3
    • /
    • pp.77-98
    • /
    • 2023
  • Large Language Models (LLMs) are becoming the major trend in the natural language processing field. These models were built based on research data, but information such as types, limitations, and risks of using research data are unknown. This research would present how to analyze and evaluate the LLMs that were built with research data: LLaMA or LLaMA base models such as Alpaca of Stanford, Vicuna of the large model systems organization, and ChatGPT from OpenAI from the perspective of research data. This quality evaluation focuses on the validity, functionality, and reliability of Data Quality Management (DQM). Furthermore, we adopted the Holistic Evaluation of Language Models (HELM) to understand its evaluation criteria and then discussed its limitations. This study presents quality evaluation criteria for LLMs using research data and future development directions.

An Influence of the Fourth Industrial Revolution on International Trade and Countermeasure Strategies to Promote Export in Korea (4차 산업혁명이 무역에 미칠 영향과 이에 대비한 수출촉진전략)

  • Lee, Byung-Mun;Jeong, Hee-Jin;Park, Kwang-So
    • Korea Trade Review
    • /
    • v.42 no.3
    • /
    • pp.1-24
    • /
    • 2017
  • This study investigates any possible influences of the fourth industrial revolution on international trade in Korea and suggests strategies to promote export of Korea in order to secure one of the biggest international trade countries. The fourth industrial revolution is the fourth major industrial era since the third industrial revolution in the 18th century which used electronics and information technology to automate production. This can be characterized as a range of emerging technologies that are fusing the physical, digital and biological worlds, and impacting all disciplines, economies and industries. Since this revolution is expected to have effects on international trade as well as whole industrial society, it examines how it may affect international trade of Korea in terms of the subject, the object, markets and forms of international trade. After that, it provides the strategies to promote Korean export in order to overcome the risks around the low economic growth of the recent years and the depressed domestic economy.

  • PDF

A Data Sampling Technique for Secure Dataset Using Weight VAE Oversampling(W-VAE) (가중치 VAE 오버샘플링(W-VAE)을 이용한 보안데이터셋 샘플링 기법 연구)

  • Kang, Hanbada;Lee, Jaewoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1872-1879
    • /
    • 2022
  • Recently, with the development of artificial intelligence technology, research to use artificial intelligence to detect hacking attacks is being actively conducted. However, the fact that security data is a representative imbalanced data is recognized as a major obstacle in composing the learning data, which is the key to the development of artificial intelligence models. Therefore, in this paper, we propose a W-VAE oversampling technique that applies VAE, a deep learning generation model, to data extraction for oversampling, and sets the number of oversampling for each class through weight calculation using K-NN for sampling. In this paper, a total of five oversampling techniques such as ROS, SMOTE, and ADASYN were applied through NSL-KDD, an open network security dataset. The oversampling method proposed in this paper proved to be the most effective sampling method compared to the existing oversampling method through the F1-Score evaluation index.

Building-up and Feasibility Study of Image Dataset of Field Construction Equipments for AI Training (인공지능 학습용 토공 건설장비 영상 데이터셋 구축 및 타당성 검토)

  • Na, Jong Ho;Shin, Hyu Soun;Lee, Jae Kang;Yun, Il Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.99-107
    • /
    • 2023
  • Recently, the rate of death and safety accidents at construction sites is the highest among all kinds of industries. In order to apply artificial intelligence technology to construction sites, it is essential to secure a dataset which can be used as a basic training data. In this paper, a number of image data were collected through actual construction site, for which major construction equipment objects mainly operated in civil engineering sites were defined. The optimal training dataset construction was completed by annotation process of about 90,000 image dataset. Reliability of the dataset was verified with the mAP of over 90 % in use of YOLO, a representative model in the field of object detection. The construction equipment training dataset built in this study has been released which is currently available on the public data portal of the Ministry of Public Administration and Security. This dataset is expected to be freely used for any application of object detection technology on construction sites especially in the field of construction safety in the future.

Education Plan of Artificial Intelligence Programming using Raspberry Pi for Computer Major Students of Industrial Specialized High Schools (공업계 특성화고등학교 컴퓨터 전공 학생들을 위한 라즈베리파이 활용 인공지능 프로그래밍 교육 방안)

  • Semin Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.365-371
    • /
    • 2023
  • In this study, we proposed a plan to educate computer students at industrial specialized high schools about artificial intelligence programming using Raspberry Pi. To create an educational program, we received advice from experts working in schools and industries, analyzed existing research and requirements, designed weekly learning plans, developed teaching materials, and conducted classes. Due to the small number of research subjects, interviews were conducted with students, and the results of the teacher's diary were also presented to derive qualitative research results. The main interview results show that although it is true that interest in the field of artificial intelligence has increased through the class, many responded that the learning content is still difficult. The teacher's diary mainly included information about the latest trends in the industry that informatics and computer teachers should not miss out on. We hope that this study will provide an opportunity to meet the needs of the industry by increasing the proportion of artificial intelligence programming in industrial specialized high schools.

Design of silicon-graphite based composite electrode for lithium-ion batteries using single-walled carbon nanotubes (단일벽 탄소나노튜브를 이용한 리튬이온전지용 실리콘-흑연 기반 복합전극 설계)

  • Jin-young Choi;Jeong-min Choi;Seung-Hyo Lee;Jun Kang;Dae-Wook Kim;Hye-Min Kim
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.3
    • /
    • pp.214-220
    • /
    • 2024
  • In this study, three-dimensional (3D) networks structure using single-walled carbon nanotubes (SWCNTs) for Si-graphite composite electrode was developed and studied about effects on the electrochemical performances. To investigate the effect of SWCNTs on forming a conductive 3D network structure electrode, zero-dimensional (0D) carbon black and different SWCNTs composition electrode were compared. It was found that SWCNTs formed a conductive network between nano-Si and graphite particles over the entire area without aggregation. The formation of 3D network structure enabled to effective access for lithium ions leading to improve the c-rate performance, and provided cycle stability by alleviating the Si volume expansion from flexibility and buffer space. The results of this study are expected to be applicable to the electrode design for high-capacity lithium-ion batteries.