DOI QR코드

DOI QR Code

Design of silicon-graphite based composite electrode for lithium-ion batteries using single-walled carbon nanotubes

단일벽 탄소나노튜브를 이용한 리튬이온전지용 실리콘-흑연 기반 복합전극 설계

  • Jin-young Choi (Low-carbon Energy Group, Ulsan Division, Korea Institute of Industrial Technology) ;
  • Jeong-min Choi (Interdisciplinary Major of Maritime AI Convergence, Korea Maritime and Ocean University) ;
  • Seung-Hyo Lee (Division of Ocean Advanced Materials Convergence Engineering, Korea Maritime & Ocean University) ;
  • Jun Kang (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Dae-Wook Kim (Low-carbon Energy Group, Ulsan Division, Korea Institute of Industrial Technology) ;
  • Hye-Min Kim (Division of Marine System Engineering, Korea Maritime and Ocean University)
  • 최진영 (한국생산기술연구원 울산본부 저탄소에너지그룹) ;
  • 최정민 (한국해양대학교 해양인공지능융합전공) ;
  • 이승효 (한국해양대학교 해양신소재융합공학과) ;
  • 강준 (한국해양대학교 기관시스템공학부) ;
  • 김대욱 (한국생산기술연구원 울산본부 저탄소에너지그룹) ;
  • 김혜민 (한국해양대학교 기관시스템공학부)
  • Received : 2024.04.19
  • Accepted : 2024.05.16
  • Published : 2024.06.30

Abstract

In this study, three-dimensional (3D) networks structure using single-walled carbon nanotubes (SWCNTs) for Si-graphite composite electrode was developed and studied about effects on the electrochemical performances. To investigate the effect of SWCNTs on forming a conductive 3D network structure electrode, zero-dimensional (0D) carbon black and different SWCNTs composition electrode were compared. It was found that SWCNTs formed a conductive network between nano-Si and graphite particles over the entire area without aggregation. The formation of 3D network structure enabled to effective access for lithium ions leading to improve the c-rate performance, and provided cycle stability by alleviating the Si volume expansion from flexibility and buffer space. The results of this study are expected to be applicable to the electrode design for high-capacity lithium-ion batteries.

Keywords

Acknowledgement

본 논문은 교육부 및 한국연구재단의 4단계 두뇌 한국21 사업(4단계 BK21 사업)으로 지원된 연구임 (창의해양융합인재양성 교육연구단)

References

  1. M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries, Advanced Materials, 30 (2018) 1800561. 
  2. Y. Song, L. Wang, L. Sheng, D. Ren, H. Liang, Y. Li, A. Wang, H. Zhang, H. Xu, X. He, The significance of mitigating crosstalk in lithium-ion batteries: a review, Energy & Environmental Science, 16 (2023) 1943-1963. 
  3. L. Nie, S. Chen, W. Liu, Challenges and strategies of lithium-rich layered oxides for Li-ion batteries, Nano Research, 16 (2023) 391-402.
  4. C. Zhong, S. Weng, Z. Wang, C. Zhan, X. Wang, Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries, Nano Energy, 117 (2023) 108894. 
  5. S.S. Zhang, Challenges and strategies for fast charge of Li-ion batteries, ChemElectroChem, 7 (2020) 3569-3577. 
  6. M.J. Lain, E. Kendrick, Understanding the limitations of lithium ion batteries at high rates, Journal of Power Sources, 493 (2021) 229690. 
  7. C. Zhang, F. Wang, J. Han, S. Bai, J. Tan, J. Liu, F. Li, Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries, Small Structures, 2 (2021) 2100009. 
  8. Z. Cheng, H. Jiang, X. Zhang, F. Cheng, M. Wu, H. Zhang, Fundamental understanding and facing challenges in structural design of porous Sibased anodes for lithium-ion batteries, Advanced Functional Materials, 33 (2023) 2301109. 
  9. H. Zhao, J. Li, Q. Zhao, X. Huang, S. Jia, J. Ma, Y. Ren, Si-based anodes: advances and challenges in Li-ion batteries for enhanced stability, Electrochemical Energy Reviews, 7 (2024) 11. 
  10. F.N.U. Khan, M.G. Rasul, A.S.M. Sayem, N. Mandal, Maximizing energy density of lithium-ion batteries for electric vehicles: a critical review, Energy Reports, 9 (2023) 11-21. 
  11. M. Ashuri, Q. He, L.L. Shaw, Silicon as a potential anode material for Liion batteries: where size, geometry and structure matter, Nanoscale, 8 (2016) 74-103. 
  12. P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao, W. Sun, S.X. Dou, Recent progress on silicon-based anode materials for practical lithium-ion battery applications, Energy Storage Materials, 15 (2018) 422-446. 
  13. J. Entwistle, R. Ge, K. Pardikar, R. Smith, D. Cumming, Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: a critical review, Renewable and Sustainable Energy Reviews, 166 (2022) 112624. 
  14. J. Wu, Y. Cao, H. Zhao, J. Mao, Z. Guo, The critical role of carbon in marrying silicon and graphite anodes for highenergy lithium-ion batteries, Carbon Energy, 1 (2019) 57-76. 
  15. J.W. Yap, T. Wang, H. Cho, J.H. Kim, Comparison of carbon-nanofiber and carbon-nanotube as conductive additives in Si anodes for high-energy lithium-ion batteries, Electrochimica Acta, 446 (2023) 142108. 
  16. J. Zhu, T. Wang, F. Fan, L. Mei, B. Lu, Atomic-scale control of silicon expansion space as ultrastable battery anodes, ACS Nano, 10 (2016) 8243-8251. 
  17. P. Sehrawat, C. Julien, S.S. Islam, Carbon nanotubes in Li-ion batteries: a review, Materials Science and Engineering B, 213 (2016) 12-40. 
  18. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy & Environmental Science, 2 (2009) 638-654. 
  19. Y. Wu, X. Zhao, Y. Shang, S. Chang, L. Dai, A. Cao, Application-driven carbon nanotube functional materials, ACS Nano, 15 (2021) 7946-7974. 
  20. S. Rathinavel, K. Priyadharshini, D. Panda, A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application, Materials Science and Engineering B, 268 (2021) 115095. 
  21. M. Zhang, J. Li, Carbon nanotube in different shapes, Materials Today, 12 (2009) 12-18. 
  22. H. Kim, D. Kim, H. Todoki, N. Zettsu, K. Teshima, Three-dimensional assembly of multiwalled carbon nanotubes for creating a robust electron-conducting network in silicon-carbon microspherebased electrodes, Scientific Reports, 10 (2020) 2342. 
  23. X. Zhu, S.H. Choi, R. Tao, X. Jia, Y. Lu, Building high-rate silicon anodes based on hierarchical Si@C@CNT nanocomposite, Journal of Alloys and Compounds, 791 (2019) 1105-1113.