• 제목/요약/키워드: AI Department

검색결과 2,083건 처리시간 0.039초

골격성 3급 부정 교합을 지닌 법랑질 형성 부전증 환자의 복합적 치료 (MULTIDISCIPLINARY MANAGEMENT FOR AMELOGENESIS IMPERFECTA PATIENT WITH SKELETAL C III MALOCCLUSION)

  • 오정환;김학렬;황윤태;김여갑;류동목;이백수;윤병욱;전준혁
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권1호
    • /
    • pp.91-96
    • /
    • 2007
  • 법랑질 형성부전증은 전치부 개교합과 같은 골격적인 문제를 자주 동반하며, 이러한 경우 구강악안면외과, 보철과, 보존과, 교정과 의사들이 함께 치료하여야 한다. 본 증례는 법랑질의 약화와 치아 우식증 등의 이유로 일반적인 교정치료를 시행할 수 없어 보철적 방법으로 치료하였다. 보존적, 보철적 방법을 이용하여 술전 교정과 같은 안정된 교합을 형성하였다. 악교정 수술을 시행하고 SAS 등을 이용하여 악간고정을 시행하여 양호한 결과를 얻을 수 있었다.

Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection

  • Chan-Young Park;Minsoo Kim;YongSoo Shim;Nayoung Ryoo;Hyunjoo Choi;Ho Tae Jeong;Gihyun Yun;Hunboc Lee;Hyungryul Kim;SangYun Kim;Young Chul Youn
    • 대한치매학회지
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD). Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma. Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset. Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.

수업활동 기반 협력적 인공지능 수학교사 개발에 대한 고찰 (Examining Development of Collaborative Artificial Intelligence in the Context of Classroom Instruction)

  • 김미령;정경영;노지화
    • East Asian mathematical journal
    • /
    • 제35권4호
    • /
    • pp.509-528
    • /
    • 2019
  • As various changes in education in general and learning environment in particular have promoted different needs and expectations for learning at both personal and social levels, the roles that schools and school teachers typically have with respect to their students are being challenged. Especially with the recent, rapid progress of the artificial intelligence(AI) field, AI could serve beyond the way in which it has been used. Based on a review of some of the related literature and the current development of AI, a view on utilizing AI to be a collaborative, complementary partner with an human mathematics teacher in the classroom in order to support both students and teachers will be discussed.

IF2bNet: 화재 감지를 위한 설명 가능 AI 기반 최적화된 딥러닝 아키텍처 (IF2bNet: An Optimized Deep Learning Architecture for Fire Detection Based on Explainable AI)

  • 진원;송미화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.719-720
    • /
    • 2024
  • 센서 기반의 자동화재탐지설비의 역할을 지원할 목적으로, 합성곱 신경망 기반의 AI 화재 감시장비등이 연구되어왔다. ai 기반 화재 감지에 사용되는 알고리즘은 전이학습을 주로 이용하고 있고, 이는 화재 감지에 기여도가 낮은 프로세스가 내장되어 있을 가능성이 존재하여, 딥러닝 모델의 복잡성을 가중시키는 원인이 될 수 있다. 본 연구에서는 이러한 모델의 복잡성을 개선하고자 다양한 딥러닝 및 해석 기술들을 분석하였고, 분석 결과를 토대로 화재 감지에 최적화된 아키텍처인 "IF2bNet" 을 제안한다. 구현한 아키텍처의 성능을 비교한 결과 동일한 성능을 내면서, 파라미터를 약 0.1 배로 경량화 하여, 복잡성을 완화하였다.

웨어러블 디바이스 착용자의 신변 보호를 위한 PPG 신호 처리 및 위협 감지 알고리즘 개발 (Threat Detection Algorithm for Wearable Device User based on PPG Signal Processing)

  • 유소희;황규원;유재현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.648-649
    • /
    • 2024
  • 웨어러블 디바이스 착용자의 PPG 신호 데이터로 위협 상황을 감지하는 알고리즘을 개발한다. 본 논문에서는 외부 환경에 예민한 PPG 센서에 최적화된 전처리 알고리즘을 제안하고 긍정 및 부정 영상 시청 실험을 통해 얻은 PPG 신호 데이터를 이용하여 위험 상황과 안전한 상황을 구분하는 정확도 96.87%의 1D-CNN 모델을 개발한다.

AI 기법을 활용한 정수장 수질예측에 관한 연구 (Study on water quality prediction in water treatment plants using AI techniques)

  • 이승민;강유진;송진우;김주환;김형수;김수전
    • 한국수자원학회논문집
    • /
    • 제57권3호
    • /
    • pp.151-164
    • /
    • 2024
  • 상수도 공급을 위한 정수장에서 전염소 또는 중염소 공정이 도입된 수처리 공정의 염소농도 관리에 필요한 공정제어를 위하여 AI 기술을 활용한 수질예측 기법이 연구되고 있다. 본 연구에서는 정수장 수처리 공정에서 실시간으로 관측, 생산되고 있는 수량·수질자료를 이용하여 염소소독 공정제어 자동화를 목적으로 침전지 후단의 잔류염소 농도를 예측하기 위한 AI 기반 예측모형을 개발하였다. AI 기반 예측모형은 과거 수질 관측자료를 학습하여 이후 시점의 수질에 대한 예측이 가능한 기법으로, 복잡한 물리·화학·생물학적 수질모형과 달리 간단하고 효율적이다. 다중회귀 모형과 AI 기반 모형인 랜덤포레스트와 LSTM을 이용하여 정수장의 침전지 후단 잔류염소 농도를 예측하여 비교하였다. 최적의 잔류염소 농도 예측을 위한 AI 모형의 입출력 구조로는 침전지 전단의 잔류염소 농도, 침전지 탁도, pH, 수온, 전기전도도, 원수의 유입량, 알칼리도, NH3 등을 독립변수로, 예측하고자 하는 침전지 유출수의 잔류염소 농도를 종속변수로 선정하였다. 독립변수는 침전지 후단의 잔류염소에 영향이 있는 정수장에서 확보가 가능한 관측자료중에서 분석을 통해 선별하였으며, 분석 결과 연구대상 정수장인 정수장에서는 중회귀모형, 신경망모형, 모델트리 및 랜덤포레스트 모형을 비교한 결과 랜덤포레스트에 기반한 모형오차가 가장 낮게 도출되는 결과를 얻을 수 있었다. 본 연구에서 제시하는 침전지 후단의 적정 잔류염소 농도 예측값은 이전 처리단계에서 염소주입량의 실시간 제어가 가능토록 할 수 있어 수처리 효율 향상과 약품비 절감에 도움이 될 것으로 기대된다.

성인 남자 주의력결핍 과잉행동장애 환자에서 인터넷 중독 성향에 관여하는 특성 (Characteristics Involved in Internet Addiction Tendency of Adult Males with Attention Deficit/Hyperactivity Disorder)

  • 노동현;김준원;민경준;이영식;김붕년;정재훈;안지영;한덕현
    • 신경정신의학
    • /
    • 제53권3호
    • /
    • pp.154-161
    • /
    • 2014
  • Objectives This study was conducted in order to investigate characteristics of temperament, depression, anxiety, attention, and impulsivity in adult males with Attention Deficit/Hyperactivity Disorder (ADHD) and internet addiction tendency. Methods The survey participants were 181 (121 patients and 60 healthy control subjects) adult males older than 19 years of age in Chung-Ang University Hospital and Gongju National Hospital. Subjects were divided according to ADHD with internet addiction tendency (AI), pure adults with ADHD (AD), and healthy control subjects (HC). All groups completed the Adult ADHD Scale (AADHD), Wender-Utah ADHD Rating Scale (WUADHD), Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), the Korean Version of Young Internet Addiction Scale (YIAS-K), Barratt Impulsiveness Scale (BIS) and Temperament Character Inventory-Revised Short version for identification of relationship between ADHD and internet addiction tendency. Results AI groups were found to have higher AADHD, WUADHD, BDI, YIAS-K, and Novelty Seeking scores, compared to the AD and HC groups. The Cooperativeness score of the AI group was significantly lower than that of the AD group and HC group. The BAI and BIS scores of the AI group and AD group were significantly higher than those of the HC group. The Self-Directedness scores of the AI group and AD group were decreased, compared to the HC group. YIAS-K scores were partially related to BDI scores in the AI group. Conclusion The results of this study indicate an association of higher score of BDI with internet addiction tendency in adult patients with ADHD. Management of temperament characteristics, depression, anxiety, attention, and impulsivity may be important for adults with ADHD and internet addiction tendency.

MONITORING SEVERE ACCIDENTS USING AI TECHNIQUES

  • No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.393-404
    • /
    • 2012
  • After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

Detection of Avian Influenza-DNA Hybridization Using Wavelength-scanning Surface Plasmon Resonance Biosensor

  • Kim, Shin-Ae;Kim, Sung-June;Lee, Sang-Hun;Park, Tai-Hyun;Byun, Kyung-Min;Kim, Sung-Guk;Shuler, Michael L.
    • Journal of the Optical Society of Korea
    • /
    • 제13권3호
    • /
    • pp.392-397
    • /
    • 2009
  • We designed a wavelength interrogation-based surface plasmon resonance (SPR) biosensor to detect avian influenza DNA (AI-DNA). Hybridization reactions between target AI-DNA probes and capture probes immobilized on a gold surface were monitored quantitatively by measuring the resonance wavelength in the visible waveband. The experimental results were consistent with numerical calculations. Although the SPR detection technique does not require the DNA to be labeled, we also evaluated fluorescently-labeled targets to verify the hybridization behavior of the AI-DNA. Changes in resonance were found to be linearly proportional to the amount of bound analyte. A wavelength interrogation-type SPR biosensor can be used for rapid measurement and high-throughput detection of highly pathogenic AI viruses.

마스크 언어 모델 기반 비병렬 한국어 텍스트 스타일 변환 (Unpaired Korean Text Style Transfer with Masked Language Model)

  • 배장성;이창기;황정인;노형종
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.391-395
    • /
    • 2021
  • 텍스트 스타일 변환은 입력 스타일(source style)로 쓰여진 텍스트의 내용(content)을 유지하며 목적 스타일(target style)의 텍스트로 변환하는 문제이다. 텍스트 스타일 변환을 시퀀스 간 변환 문제(sequence-to-sequence)로 보고 기존 기계학습 모델을 이용해 해결할 수 있지만, 모델 학습에 필요한 각 스타일에 대응되는 병렬 말뭉치를 구하기 어려운 문제점이 있다. 따라서 최근에는 비병렬 말뭉치를 이용해 텍스트 스타일 변환을 수행하는 방법들이 연구되고 있다. 이 연구들은 주로 인코더-디코더 구조의 생성 모델을 사용하기 때문에 입력 문장이 가지고 있는 내용이 누락되거나 다른 내용의 문장이 생성될 수 있는 문제점이 있다. 본 논문에서는 마스크 언어 모델(masked language model)을 이용해 입력 텍스트의 내용을 유지하면서 원하는 스타일로 변경할 수 있는 텍스트 스타일 변환 방법을 제안하고 한국어 긍정-부정, 채팅체-문어체 변환에 적용한다.

  • PDF