• 제목/요약/키워드: AI 의료영상 진단

검색결과 22건 처리시간 0.033초

3D 히스토그램 기반 영역분할을 이용한 흉부 X선 영상 품질 평가 (Quality Evaluation of Chest X-ray Images using Region Segmentation based on 3D Histogram)

  • 최현진;배수빈;박예슬;이정원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.903-906
    • /
    • 2021
  • 인공지능 기술 발전으로, 의료영상 분야에서도 딥러닝 기반 질병 진단 연구가 활발히 진행되고 있다. 딥러닝 모델 개발 시, 학습 데이터 품질은 모델의 성능과 신뢰성에 매우 큰 영향을 미친다. 그러나 의료 분야의 경우 도메인 지식에 대한 진입 장벽이 높아 개발자가 학습에 사용되는 의료영상 데이터의 품질을 평가하기 어렵다. 이로 인해, 많은 의료영상 분야에서는 각 분야의 특성(질병의 종류, 관찰 아나토미 등)에 따른 영상 품질 평가 방법을 제시해왔다. 그러나 기존의 방법은 특정 질병에 초점이 맞춰져, 일반화된 품질 평가 기준을 제시하고 있지 않다. 따라서 본 논문에서는 대부분의 흉부 질환을 진단하기 위한 흉부 X선 영상의 품질을 평가할 수 있는 기준을 제안한다. 우선, 흉부 X선 영상을 대상으로 관찰된 영역인 심장, 횡격막, 견갑골, 폐 등을 분할하여, 3D 히스토그램을 기반으로 각 영역별 통계적인 정밀 품질 평가 기준을 제안한다. 본 연구에서는 JSRT, Chest 14의 오픈 데이터셋을 활용하여 적용 실험을 수행하였으며, 민감도는 97.6%, 특이도는 92.8%의 우수한 성능을 확인하였다.

공동연구 네트워크의 폐쇄와 구조적 공백이 연구성과에 미치는 영향 (The Impact of Network Closure and Structural Holes on Research Performance in Collaboration Networks)

  • 이나리;박지홍
    • 정보관리학회지
    • /
    • 제41권3호
    • /
    • pp.289-308
    • /
    • 2024
  • 본 연구에서는 AI 의료영상 진단 분야를 중심으로 공동연구 네트워크의 특성을 살펴보고, 사회자본의 2가지 개념인 네트워크 폐쇄와 구조적 공백이 연구성과에 미치는 영향을 분석하였다. 분석 결과, 네트워크의 구조는 하나의 큰 컴포넌트를 가지고 있으며, 이를 제외하고는 클러스터 간의 분절이 심하고 각 클러스터 내의 응집성은 매우 높은 것으로 나타났다. 또한 네트워크 폐쇄는 밀도로, 구조적 공백은 효율성으로 측정하여 연구성과와의 관계를 QAP 회귀분석을 통해 확인한 결과, 네트워크 폐쇄와 구조적 공백은 모두 연구성과에 긍정적인 영향을 미치는 것으로 나타났다. 이는 영상의학의 한 분야인 의료영상 진단에 AI 라는 새로운 분야가 접목될 때, 연구자들 간의 강한 연결뿐만 아니라 다양한 지식을 수용할 수 있는 구조적 공백 또한 연구 성과에 영향을 미친다는 것을 의미한다. 이러한 연구 결과는 공동 지식 생산을 위한 연구 협업에서 적절하게 조화를 이루는 네트워크의 필요성을 시사한다.

웹기반 의료영상 표준 데이터셋 변환 및 관리 시스템 구축 (Construction of Web-Based Medical Imgage Standard Dataset Conversion and Management System)

  • 김지언;임동욱;유영주;노시형;이충섭;김태훈;정창원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.282-284
    • /
    • 2021
  • 최근 4차 산업혁명으로 의료빅데이터 기반으로 한 AI 기술이 급속도로 발전하고 있다. 특히, 의료영상을 기반으로 병변을 탐색, 분활 및 정량화 그리고 자동진단 및 예측 관련된 기술이 AI 제품으로 출시되고 있다. AI 기술개발은 많은 학습데이터가 요구되며, 임상검증에 단일기관에서 2개 이상 기관의 검증이 요구되고 있다. 그러나 아직까지도 단일기관에서 학습용 데이터와 테스트, 검증용 데이터를 달리하여 기술개발에 활용하고 있다. 본 논문은 AI 기술개발에 필요한 영상데이터에 대한 표준화된 데이터셋 변환 및 관리를 위한 시스템에 대해 기술한다. 다기관 데이터를 수집하기 위해서는 각 기관의 의료영상 데이터 수집 및 저장하는 기준이 명확하지 않아 표준화 작업이 필요하다. 제안한 시스템은 기관 또는 다기관 연구 그룹의 의료영상데이터를 표준화하여 저장할 수 있을 뿐만 아니라 의료영상 뷰어 및 의료영상 리스트를 통해 연구자가 원하는 의료영상 데이터 셋을 검색하여 다양한 데이터셋으로 제공할 수 있기 때문에 수집 및 변환 그리고 관리까지 지원할 수 있는 시스템으로 영상기반의 머신러닝 연구에 활력을 불어넣을 수 있을 것으로 기대하고 있다.

머신러닝을 위한 의료영상기반 학습 데이터 지원 플랫폼 구축 및 근감소증 데이터 AI 응용 (Construction of Medical Image-Based Learning Data Support Platform for Machine Learning and Its Application of Sarcopenia Data AI)

  • 김지언;임동욱;유영주;노시형;이충섭;김태훈;정창원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.434-436
    • /
    • 2021
  • 의료산업은 진단 및 치료 위주의 기술개발이 진행되어왔다. 최근 의료 빅데이터를 기반으로 진단, 치료 및 재활뿐만 아니라 예방과 예후관리까지 지원하는 의료서비스에 대한 패러다임이 변화되고 있다. 특히, 여러 의료 중심의 플랫폼 기술 가운데 객관적인 진단지표를 가지고 있는 의료영상을 기반으로 인공지능 학습에 적용하여 진단 및 예측을 중심으로 한 플랫폼 개발이 진행되고 있다. 하지만, 인공지능 연구에는 많은 학습 데이터가 요구될 뿐만 아니라 학습에 적용하기 위해서는 데이터 특성에 따른 전처리 기술과 분류 작업에 많은 시간 소요되어 이와 같은 문제점을 해결할 수 있는 방법들이 요구되고 있다. 따라서, 본 논문은 인공지능 학습까지 적용하기 위한 의료영상 데이터에 대한 확장 모델을 개발하여 공통적인 조건에 따라 의료영상 데이터가 표준화되어 변환하며, 자동화 시스템 구조에 따라 데이터가 분류·저장되어 인공지능 학습까지 지원할 수 있는 플랫폼을 제안하고자 한다. 그리고 근감소증 학습데이터 관리 및 적용 결과를 통해 플랫폼의 수행성을 검증하였다. 향후 제안한 플랫폼을 통해 의료데이터에 대한 전처리, 분류, 관리까지 지원함으로써 CDM 확장 표준 의료데이터 플랫폼으로 활용 가능성을 보였다.

세그멘테이션 라벨링 없는 최소 전처리를 통한 AI 의료 영상에서의 다 질병 진단 효율화 (Efficient Multi-Disease Diagnosis in AI Medical Imaging Through Minimal Preprocessing Without Segmentation Labeling)

  • 서동준;이승찬;허윤정;원일용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.424-425
    • /
    • 2023
  • AI 의료 영상 분석 기술은 의료 분야의 인력 부족 문제를 해결하는 방법으로 주목받고 있다. 이전 연구들은 세그멘테이션 라벨링과 질병 유무를 결합하여 판단하는데, 이 방법은 큰 비용과 시간이 소요된다. 본 논문은 의료 전문가의 세그멘테이션 라벨링 없이 병명 라벨만의 학습으로 질병을 어느 정도 진단할 수 있음을 보인다. 실험에 따르면 의미있는 결과를 확인할 수 있었다.

인공지능 기술 기반의 의료영상 판독 보조 시스템의 효율성 분석 : ISO/IEC 25023 소프트웨어 품질 요구사항의 Time Behavior를 중심으로 (An Efficiency Analysis of an Artificial Intelligence Medical Image Analysis Software System : Focusing on the Time Behavior of ISO/IEC 25023 Software Quality Requirements)

  • 한창화;전영황;한재복;송종남
    • 한국방사선학회논문지
    • /
    • 제17권6호
    • /
    • pp.939-945
    • /
    • 2023
  • 본 연구는 영상의학 분야에서 인공지능(AI) 기술 기반의 판독 보조 시스템의 'Time Behavior(시간반응성)' 속성을 측정하여 '성능 효율성'을 분석하였다. 의료 영상의 증가와 영상의학 전문의 수의 한계로 인해 인공지능(AI) 기술 기반의 솔루션이 증가하고 있으며, 관련된 연구가 많이 수행되고 있다. 하지만 대부분의 선행 연구가 인공지능의 진단 정확도에 초점을 맞췄다면, 본 연구는 Time Behavior의 중요성을 강조하여 수행하였다. 50개의 흉부 엑스레이 PA 이미지를 사용하여 측정한 결과, 평균 15.24초 만에 영상을 처리하여 높은 일관성과 안정성을 보여주었고, 이 처리 속도는 유명 글로벌 AI 플랫폼과 동등한 수준으로 영상의학과 워크플로우 효율성 부분에 크게 개선될 수 있는 가능성을 제시하였다. 앞으로 인공지능 기술이 영상의학 분야에서 큰 역할을 담당하여, 전반적인 의료 품질 향상과 효율성을 개선하는 데 도움이 될 것으로 기대한다.

영역별 화소값 분석을 통한 흉부 X선 오픈 데이터셋 품질 평가 (Quality Evaluation of Chest X-ray Open Dataset through Pixel Value Analysis by Region)

  • 최현진;배수빈;선주성;이정원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.614-617
    • /
    • 2022
  • 인공지능의 발전으로 의료영상 분야에서 딥러닝 기반 질병 진단 연구가 활발하다. 그러나 모델 개발 시 학습 데이터의 개수와 품질은 매우 중요한데, 의료 분야 특성상 접근 가능한 데이터셋이 적으며 오픈 데이터셋은 서로 다른 기관에서 배포되거나 웹상에서 수집된 것으로 진단에 적합한 품질을 기대하기 어렵다. 또한, 기존 연구는 데이터셋이 학습에 적합한지에 대한 품질검증 없이 사용한다. 따라서 본 논문에서는 임상에서 사용하는 화질 평가 요소에 근거를 두고 영역별 화소값 분석을 통한 흉부 X선 영상 품질 평가 기법을 제안한다. 오픈 데이터셋 JSRT, Chest14와 국내 A 병원 데이터셋 AUH에 제안한 기법을 적용한 결과 민감도 91.5%, 특이도 96.1%의 우수한 성능을 확인하였다.

CT 영상 기반 근감소증 진단을 위한 AI 영상분할 모델 개발 및 검증 (Development and Validation of AI Image Segmentation Model for CT Image-Based Sarcopenia Diagnosis)

  • 이충섭;임동욱;노시형;김태훈;고유선;김경원;정창원
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권3호
    • /
    • pp.119-126
    • /
    • 2023
  • 근감소증은 국내는 2021년 질병으로 분류되었을 만큼 잘 알려져 있지 않지만 고령화사회에 진입한 선진국에서는 사회적 문제로 인식하고 있다. 근감소증 진단은 유럽노인근감소증 진단그룹(EWGSOP)과 아시아근감소증진단그룹(AWGS)에서 제시하는 국제표준지침을 따른다. 최근 진단방법으로 절대적 근육량 이외에 신체수행평가로 보행속도 측정과 일어서기 검사 등을 통하여 근육 기능을 함께 측정할 것을 권고하고 있다. 근육량을 측정하기 위한 대표적인 방법으로 DEXA를 이용한 체성분 분석 방법이 임상에서 정식으로 실시하고 있다. 또한 MRI 또는 CT의 복부 영상을 이용하여 근육량을 측정하는 다양한 연구가 활발하게 진행되고 있다. 따라서 본 논문에서는 근감소증 진단을 위해서 비교적 짧은 촬영시간을 갖는 CT의 복부영상기반으로 AI 영상 분할 모델을 개발하고 다기관 검증한 내용을 기술한다. 우리는 CT 영상 중에 요추의 L3 영역을 분류하여 피하지방, 내장지방, 근육을 자동으로 분할할 수 있는 인공지능 모델을 U-Net 모델을 사용하여 개발하였다. 또한 모델의 성능평가를 위해서 분할영역의 IOU(Intersection over Union)를 계산하여 내부검증을 진행했으며, 타 병원의 데이터를 활용하여 동일한 IOU 방법으로 외부검증을 진행한 결과를 보인다. 검증 결과를 토대로 문제점과 해결방안에 대해서 검증하고 보완하고자 했다.

다기관 임상연구를 위한 인공지능 학습 플랫폼 구축 (Construction of Artificial Intelligence Training Platform for Multi-Center Clinical Research)

  • 이충섭;김지언;노시형;김태훈;윤권하;정창원
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권10호
    • /
    • pp.239-246
    • /
    • 2020
  • 인공지능 기술을 도입한 의료분야에서 진단 및 예측과 연계한 임상의사결정지원 시스템(CDSS)에 관련된 연구가 활발하게 진행되고 있다. 특히, 인공지능 기술 적용에 가장 많은 이슈를 일으키고 있는 의료영상기반의 질환진단연구가 다양한 제품으로 출시되고 있는 실정이다. 그러나 의료영상 데이터는 일관되지 않은 데이터들로 이루어져 있으며, 그것을 정제하여 연구에 사용하기 위해서는 상당한 시간이 필요한 것이 현실이다. 본 논문은 의료영상 표준인 R_CDM(Radiology Common Data Model)으로 변환하고, 그 데이터를 기반으로 인공지능 알고리즘 개발 연구를 지원하기위한 원스톱 인공지능학습 플랫폼에 대하여 기술한다. 이를 위해 기존 공통데이터모델(CDM : Common Data Model)과 연계에 중점을 두어 DICOM(Digital Imaging and Communications in Medicine) 태그정보를 기반으로 의료영상 표준 모델의 스키마와 다기관 연구를 위한 Report 정보를 포함하여 시스템을 모델링하였다. 이렇게 변환된 데이터 집합을 기반으로 인공지능 학습 플랫폼에서 수행 과정을 결과로 보인다. 제안한 플랫폼을 통해 다양한 영상기반 인공지능 연구에 활용될 것으로 기대하고 있다.

인공지능 플랫폼기반 요로결석진단을 위한 CT 영상 데이터 자동판독 시스템 구축 (Construction of CT Image data Automatic Recognition System for Diagnosis of Urinary Stone Based on AI Plaform)

  • 노시형;이충섭;김태훈;이윤오;박성빈;윤권하;정창원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.928-930
    • /
    • 2020
  • 본 논문은 인공지능 플랫폼 기반의 요로결석 진단을 위한 CT 영상 데이터 자동판독 시스템에 대해 기술하고자 한다. 제안한 시스템은 웹 기반의 플랫폼을 기반으로 하며, 인공지능 기반의 진단 알고리즘을 장착하여 빠르게 요로결석 환자의 스크리닝에 목적을 두고 있다. 병원정보시스템의 PACS와 EMR과 연계와 Deep learning 진단 알고리즘을 적용한 요로결석 자동판독 시스템을 개발하였다. 특히, 기 구축된 인공지능 플랫폼을 통해 추출한 데이터셋을 기반으로 진단 알고리즘 개발 방법과 수행 결과를 보인다. 제안한 시스템은 요로결석 진단과 수술여부에 의사결정지원 시스템으로 임상에서 활용될 것으로 기대하고 있다.