• 제목/요약/키워드: AI 융합

검색결과 1,004건 처리시간 0.028초

패널 데이터를 활용한 경제적 지표와 우울증 분석: 2018년부터 2022년 데이터를 기반으로 (Analysis of Economic Indicators and Depression using Panel Data: based on data from 2018 to 2022)

  • 우성민;김봉현
    • 산업과 과학
    • /
    • 제3권3호
    • /
    • pp.29-35
    • /
    • 2024
  • 본 연구는 경제적 지표(경제 성장률, 취업률, 물가)가 개인의 정신 건강, 특히 우울증 발생에 미치는 영향을 분석하고, 이를 통해 경제적 안정성과 정신 건강의 상관관계를 규명하는 것을 목적으로 한다. 공공데이터포털과 국가통계 포털에서 경제 지표와 우울증 데이터를 수집하고, Python과 Pandas를 활용하여 데이터를 정제 및 분석하였다. Seaborn과 Matplotlib을 사용해 데이터의 시각화를 수행했다. 연구 결과, 경제적 불안정성은 우울증 발생률 증가와 높은 상관관계를 보였으며, 특히 물가 상승과 경제 성장률 감소 시 우울증 환자 수가 증가하는 경향을 확인했다. 또한, 특정 연령대와 성별에서 우울증 발생률이 높게 나타났으며, 이는 사회적 고립과 경제적 어려움 등이 주요 원인으로 작용함을 발견했다. 본 연구는 정신 건강 정책 수립에 기여할 수 있으며, 향후 다양한 사회적 요인을 고려한 추가 연구가 필요하다.

영지식 증명 시스템 구축 연구 (Research on A Comprehensive Study on Building a Zero Knowledge Proof System Model)

  • 홍성혁
    • 산업과 과학
    • /
    • 제3권3호
    • /
    • pp.8-13
    • /
    • 2024
  • 제로 지식 증명(ZKP)은 가상 화폐 거래의 프라이버시와 보안을 향상시키기 위해 설계된 혁신적인 분산 기술이다. ZKP는 거래 제공자가 필요한 정보만을 공개함으로써 모든 관련 당사자의 기밀성을 보호한다. ZKP는 블록체인 거래에서 신원과 가치를 숨기는 강력한 프라이버시 기능을 제공할 뿐만 아니라, 당사자들이 서로의 신원을 확인할 필요 없이 돈을 교환할 수 있게 합니다. 이러한 익명성 기능은 금융 거래에서 신뢰와 보안을 촉진하는 데 매우 중요하며, 가상 화폐 영역에서 ZKP를 핵심 기술로 만든다. 4차 산업혁명 시대의 맥락에서 ZKP의 응용은 금융 서비스의 포괄적이고 안정적인 발전에 크게 기여합니다. 거래 프라이버시를 보장하여 신뢰할 수 있는 사용자 환경을 조성함으로써 가상 화폐의 광범위한 채택을 장려합니다. ZKP를 통합함으로써 금융 서비스는 보안과 신뢰의 높은 수준을 달성할 수 있으며, 이는 부문 내 지속적인 성장과 혁신을 위해 필수적이다.

마이크로 LED 기술 소개 및 연구 동향 (Introduction and Research Trends on Micro LED Technology)

  • 김무진
    • 산업과 과학
    • /
    • 제3권3호
    • /
    • pp.14-19
    • /
    • 2024
  • 현재 마이크로 LED (Light Emitting Diode)는 디스플레이와 함께 조명 분야에서 관심을 받고 있으며, 높은 휘도, 빠른 동작 속도, 에너지 효율, 오랜 시간 동작 등의 장점을 가지고 있다. 스마트폰, 텔레비젼, 웨어러블 전자소자 등에서 새로운 혁신을 불러올 것으로 예측된다. 이러한 마이크로 디스플레이는 마이크로미터 크기의 LED 소자들로 이루어진 픽셀로 구현되며, 자체적으로 빛을 내는 자체발광형 디스플레이다. 주요 제조 공정으로는 결정성장, 패터닝과 식각, 칩 분리와 전사, 본딩과 배선, 패널 조립과 봉지, 검사와 품질 관리 등으로 구분할 수 있다. 최근 몇 년 동안 이 기술은 빠른 속도로 발전했으며, 기업들이 이러한 분야에의 투자를 확대하고 있다. 최신 시장 조사 결과에 의하면, 마이크로 LED 디스플레이 시장은 지속적으로 성장할 것으로 관측되고 있으며, 주요 발전 방향은 제조공정 개선, 소재 혁신, 구동 기술 발전 등으로 요약할 수 있다. 이러한 연구를 통해 상용화가 가속화되어 높은 성능과 다양한 응용 가능성으로 디스플레이 산업의 혁신을 이끌 것이라 판단된다.

Design and Development of Open-Source-Based Artificial Intelligence for Emotion Extraction from Voice

  • Seong-Gun Yun;Hyeok-Chan Kwon;Eunju Park;Young-Bok Cho
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.79-87
    • /
    • 2024
  • 본 연구는 청각 장애인의 의사소통 개선을 목표로, 음성 데이터에서 감정을 인식하고 분류하는 인공지능 모델을 개발하였다. 이를 위해 CNN-Transformer, HuBERT-Transformer, 그리고 Wav2Vec 2.0 모델을 포함하는 세 가지 주요 인공지능 모델을 활용하여, 사용자의 음성을 실시간으로 분석하고 감정을 분류한다. 음성 데이터의 특징을 효과적으로 추출하기 위해 Mel-Frequency Cepstral Coefficient(MFCC)와 같은 변환 방식을 적용, 음성의 복잡한 특성과 미묘한 감정 변화를 정확하게 포착하고자 하였다. 실험 결과, HuBERT-Transformer 모델이 가장 높은 정확도를 보임으로써, 음성기반 감정 인식 분야에서의 사전 학습된 모델과 복잡한 학습 구조의 융합이 효과적임을 입증하였다. 본 연구는 음성 데이터를 통한 감정 인식 기술의 발전 가능성을 제시하며, 청각 장애인의 의사소통과 상호작용 개선에 기여할 수 있는 새로운 방안을 모색한다는 점에서 의의를 가진다.

Development of an Automated ESG Document Review System using Ensemble-Based OCR and RAG Technologies

  • Eun-Sil Choi
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.25-37
    • /
    • 2024
  • 본 연구는 ESG 서류 검토 과정의 효율성 향상을 위해, 광학 문자 인식(OCR)과 검색 증강 생성(RAG) 기술을 융합한 새로운 자동화 시스템을 제안한다. 제안된 시스템은 OCR 프로세스에 앙상블 모델 기반의 이미지 전처리 알고리즘과 하이브리드 정보 추출 모델을 적용하여 텍스트 인식의 정확도를 향상시키며, RAG 파이프라인에 레이아웃 분석 알고리즘과 재순위화 알고리즘, 앙상블 검색기 등을 적용하여 정보 검색과 답변 생성의 신뢰성을 최적화한다. 시스템의 성능을 평가하기 위해 온라인 포털에 게시된 인증서 이미지와 기업 웹사이트 등에 공개된 회사 내규를 사용하여 테스트를 진행한 결과, 인증서 검토에서 93.8%, 회사 내규 검토에서 92.2%의 정확도를 달성하며, 제안된 시스템이 ESG 평가 과정에서 인간 평가자를 효과적으로 보조할 수 있음을 보여주었다.

첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계 (Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design)

  • 허성구;정찬혁;이나희;심예림;우태용;김정인;유창규
    • 청정기술
    • /
    • 제28권1호
    • /
    • pp.79-93
    • /
    • 2022
  • 본 연구에서는 Part I에서 제안한 첨단 전자산업 폐수처리시설 특화 Water Digital Twin모델인 e-ASM을 이용하여 랩-파일럿 처리장 데이터를 바탕으로 모델 보정(Calibration), 유입 성상에 따른 제거 효율, 유출수 예측 및 최적 공법 선정을 수행하였다. 첨단 전자산업 폐수처리시설의 특화 모델링을 위하여, 민감도 분석을 통해 e-ASM 모델의 정합성과 상관성이 높은 동역학적 파라미터를 선정하였고, 다중반응표면분석법 (Multiple response surface methodology, MRS)을 이용하여 동역학적 파라미터를 보정하였다. e-ASM 모델의 보정 결과, Lab-scale, Pilot-scale 단위의 실험데이터와 90% 이상의 높은 정합성을 보였다. 그리고 4가지 유기폐수 처리처리공법인 MLE, A2/O, 4-stage MLE-MBR, Bardenpho-MBR을 제안한 Water Digital Twin으로 구현하여 유입 폐수의 성상별 운전조건에 따라 제거효율을 분석하였으며, Bardenpho-MBR이 C/N ratio 변화에서도 안정적으로 COD (Chemical oxygen demand)를 90% 이상 제거하며 높은 총 질소 제거 효율을 보였다. 그리고 유입 폐수의 조건별 Bardenpho-MBR공정의 수리학적 체류시간(Hydraulic retention time, HRT)이 3일 이상일 때 1,800 mg L-1의 고농도 TMAH 폐수를 98% 이상 제거할 수 있음을 확인할 수 있었다. 이와 같이, 본 연구에서 개발한 e-ASM은 전자산업 제조시설별, 유입 폐수의 성상별 특화 모델링을 통해 높은 정합성을 가진 전자산업 폐수처리공정의 Water Digital Twin를 구현할 수 있고, 최적운전, Water AI, 최적가용기법 선정 등의 응용 가능성을 바탕으로 지속 가능한 첨단전자 산업을 위해 활용될 수 있을 것으로 사료된다.

해양 이상 자료 탐지를 위한 오토인코더 활용 기법 최적화 연구 (An Outlier Detection Using Autoencoder for Ocean Observation Data)

  • 김현재;김동훈;임채욱;신용탁;이상철;최영진;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제33권6호
    • /
    • pp.265-274
    • /
    • 2021
  • 해양 이상 자료 탐지의 연구는 이전부터 활발하게 이루어지고 있으며, 통계 및 거리 기반의 기계 학습 알고리즘을 활용하는 기법들이 개발되었다. 최근에는 AI 기반의 해양 자료 이상 탐지 기법이 많은 관심을 받고 있으며, AI를 활용한 해양 이상 자료 탐지 기법은 정답이 주어지는 지도학습 기법이 주를 이루고 있다. 이러한 방법은 학습에 필요한 모든 자료에 수작업으로 분류 정보(라벨)를 지정해야 한다는 점에서 많은 시간과 비용이 요구된다. 본 연구에서는 이러한 문제를 극복하기 위해 비지도학습 기반의 오토인코더를 이상 자료 탐지 기법에 사용하였다. 실험으로는 오토인코더의 평가를 위해 단변수·다변수학습 두가지 실험을 구성하였고, 단변수 학습은 기상청에서 제공하는 덕적도 부이 정점 관측 자료 중 수온만 사용하였으며, 다변수 학습은 수온과 기온, 풍향, 풍속, 기압, 습도 등을 사용하였다. 사용기간은 1996~2020년의 25년간이며 학습 자료에 해양-기상 자료의 특성을 고려한 전처리 기법을 적용하였다. 학습된 다변수와 단변수 오토인코더를 활용하여 실제 표층 수온에 대한 이상 탐지를 시도하였다. 모델성능 비교를 위해 오차를 삽입한 합성 자료에 다변수와 단변수 오토인코더를 포함한 여러 이상 탐지 기법을 적용하여 정량적으로 평가하였으며, 다변수/단변수의 정확도가 각각 약 96%/91%로써 다변수 오토인코더가 더 나은 이상자료 탐지 성능을 보였다. 오토인코더를 이용한 비지도학습 기반 이상 탐지 기법은 주관적 판단에 의한 오류와 자료 라벨링에 필요한 시간과 비용을 줄일 수 있다는 점에서 다양하게 활용될 것으로 판단된다.

침수유발 강우량을 이용한 강원특별자치도 호우특보 기준에 관한 연구 (The study of heavy rain warning in Gangwon State using threshold rainfall)

  • 이현지;강동호;이익상;김병식
    • 한국수자원학회논문집
    • /
    • 제56권11호
    • /
    • pp.751-764
    • /
    • 2023
  • 강원특별자치도는 태백산맥을 중심으로 지방에 따라 기후 특성이 매우 다르며, 국지성 호우가 빈번하게 발생하는 지역이다. 호우재해는 발생 시간이 짧고, 시공간적 변동성이 매우 커 많은 인명 및 재산피해를 유발한다. 최근 10년(2012~2021)간 강원지역 호우피해 발생 횟수는 28건이고, 평균 발생 피해액은 456억 원가량으로 집계되었다. 호우재해를 저감하기 위해선 지역단위의 재난관리 방안을 수립해야 한다. 특히나 현재 운영 중인 호우특보 기준은 획일화되어 지역 특성을 고려하지 못하는 한계가 있다. 이에 본 연구는 강원특별자치도에 위치한 특보구역을 대상으로 침수유발 강우량을 고려한 호우특보 기준을 제안하고자 한다. 특보구역별 침수유발 강우량 대푯값 분석 결과 평균값이 호우특보 발령 기준과 유사했고, 이를 본 연구의 호우특보 기준으로 선정하였다. 호우특보 기준 검토를 위한 강우사상으로 2019년 태풍 미탁, 2020년 태풍 마이삭과 하이선, 2023년 태풍 카눈 강우사상을 적용했고, Hit Rate 정확도 검증 결과 강릉평지 72%, 원주 98%로 본 연구는 실제 특보를 잘 반영함을 확인했다. 본 연구의 호우특보 기준은 위기경보 단계(관심, 주의, 경계, 심각)와 위계가 동일하여 선제적 호우재해 대응이 가능할 것으로 판단된다. 본 연구 결과는 향후 호우재해 대응의 획일적 의사결정 시스템을 보완하고, 이를 토대로 지역별 재해위험성을 고려한 호우특보 기준으로 활용될 수 있을 것으로 사료된다.

포스트 코로나 시대 고고유산 교육의 가치와 지속가능성을 위한 전략 (Strategies for Increasing the Value and Sustainability of Archaeological Education in the Post-COVID-19 Era)

  • 김은경
    • 헤리티지:역사와 과학
    • /
    • 제55권2호
    • /
    • pp.82-100
    • /
    • 2022
  • 코로나19 팬데믹이라는 위기 상황과 4차 산업혁명시대를 경험하게 되면서 고고유산 교육 역시 새로운 국면을 맞이하게 되었다. '비대면', '비접촉'이 일상이 된 현 상황과 각종 디지털기술이 발달하고 있는 시대를 맞이함에 따라 직접 경험하고, 조작적 체험이 주를 이루는 고고유산 교육은 여러모로 많은 변화가 발생하였다. 이 글은 포스트코로나 시대의 트렌드에 부응하는 한편, 4차 산업혁명시대에 필요한 고고유산 교육의 발전 방안과 지속가능한 전략을 모색해 본 것이다. 고고유산 교육은 4차 산업혁명시대에 필요한 역량은 물론 개인들의 정서적 만족감과 행복감을 고취시키는데 매우 적합한 교육 형태이다. 그중에서도 현 시대의 맥락을 반영한 창의적 인재양성 및 문제해결력, 자기효능감을 향상시킬 수 있는 교육의 형태로 고고유산 메이커교육이 주목된다. 이러한 메이커교육은 구성주의를 기반한 교육으로 진행될 필요가 있고, 다양한 연령별 특징을 고려하여 구체적인 학습목표 및 효과를 설정하여 설계되어야 한다. 또한 고고유산 역시 VR, AR, 클라우드, 드론 영상 기술을 적용한 다양한 ICT 활용 콘텐츠들이 개발 및 확대되고 있다. 그중에서도 온택트로 진행되는 고고유산 디지털 교육은 비대면이라는 상황 속에서도 쌍방향 소통이 가능한 커뮤니티 활성화 방안을 모색해야 한다. 아울러 온택트 교육은 교육이라는 측면을 고려해야 하므로 문화적 문해를 성장시키기 위한 목적이 추가적으로 설정되어야 한다. 이러한 고고유산 콘텐츠 개발은 온택트 교육에 최적화된 학술성을 담지한 스토리자원이 확보되어야 하는데, '문화콜라주'의 입장에서 다양한 융합적 콘텐츠를 제작하는 동시에 학습자의 흥미와 학습 능력, 학습 목적을 고려한 AI기능이 추가될 필요가 있다고 생각한다. 또한 온라인으로 진행되는 고고유산 콘텐츠 교육은 추후 실물을 접할 수 있는 동기부여나 현장학습을 고려한 선행학습, 보완학습으로 진행되어야 한다. 결국 고고유산 온택트 교육은 현재의 트렌드에 부응하는 최첨단 기술을 활용하여 진행되겠지만, 그와 연동하여 발견의 학습, 질문-탐구형 학습 모두가 가능한 구성주의학습을 위한 지속적인 노력이 필요하다.

YOLO 알고리즘 기반 국토위성영상의 선박 모니터링 가능성 평가 연구: 부산 신항과 캘리포니아 오클랜드항을 대상으로 (A Study on Evaluating the Possibility of Monitoring Ships of CAS500-1 Images Based on YOLO Algorithm: A Case Study of a Busan New Port and an Oakland Port in California)

  • 박상철;박영빈;장소영;김태호
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1463-1478
    • /
    • 2022
  • 한국 수출입의 99.7%는 해상운송이 차지하고 있으며, 항만의 효율적 운영을 위해 해운 물류 모니터링 시스템 개발 필요성이 대두되고 있다. 현재 automatic identification system (AIS)를 기반으로 선박의 정보를 조회하여 해상 물동량 추정 연구가 진행되고 있지만, AIS를 운영하지 않는 선박들에 대한 모니터링은 불가능하다는 한계가 있다. 고해상도 광학 위성 영상은 광역의 범위에서 AIS 미운영 선박 및 소형 선박을 식별할 수 있기 때문에 AIS 기반 물동량 모니터링의 공백을 보완할 수 있다. 그러므로 선박 및 물동량 모니터링에 활용하기 위해, 고해상도 광학 위성영상에서 선박을 탐지하고 화물선 및 소형 선박을 분류하는 연구가 필요하다. 본 연구는 초기 국토위성영상을 이용하여 생산된 학습 자료 기반으로 인공지능 모델을 훈련시키고 다른 영상에서 탐지를 수행함으로써, 국토위성영상의 딥러닝 학습 자료 생산 및 선박 모니터링 활용 가능성을 알아보고자 하였다. 학습 자료는 황해 및 황해 주요 항만 구역 내 선박들을 추출하여 제작했으며, You Only Look Once (YOLO) 알고리즘을 사용하여 탐지 모델은 구축하고 국내외 주요 항만 각 1개소를 대상으로 선박 탐지 성능을 평가하였다. 항만 접안 및 해상 정박중인 선박을 대상으로 탐지 모델에 적용한 결과를 AIS의 선종 정보와 비교하였고, 국내 항만에서 85.5%와 89%, 국외 항만에서 70%의 선종 분류 정확도를 확인하였다. 본 연구 결과는 정박중인 선박을 중심으로 고해상도 국토위성영상을 활용하여 모니터링이 가능함을 확인하였다. 향후 지속적인 학습 자료 구축을 통해 탐지 모델의 정확도를 향상시킨다면 전세계 주요 항만에서 선박 및 물동량 모니터링 분야에 활용할 수 있을 것으로 기대된다.