• Title/Summary/Keyword: AI 분류 모델

Search Result 224, Processing Time 0.029 seconds

기업의 기술역량 VS 사회적가치: 창업 교육을 이수하는 대학생의 모의투자를 중심으로

  • Nam, Jin-Hyeok
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2021.04a
    • /
    • pp.61-65
    • /
    • 2021
  • 세계적으로 창업 생태계가 구축되면서 기술창업 분야가 두각을 보이고 있다. 기술창업은 기술력을 통한 지속력뿐 아니라 혁신적으로 변화를 진행시키므로 기술에 대한 투자 동향을 날이갈수록 높아지고 있다. 하지만 기술이 발전하면서 함께 주목되고 있는 분야가 사회적 가치를 가지고 있는 소셜벤처이다. 특히 UN에서 발표한 지속가능한 발전목표(SDGs)의 경우 필수적으로 사업 비즈니스 모델적으로 채택된 분야를 갖고 있어야하며 비재무적성과를 판단하는 기준인 ESG 또한 필수적인 사회적 가치 요소로 떠오르고 있다. 이러한 흐름 속에서 기술 역량을 내세웠을 때와 사회적 가치를 내세웠을 때 투자자들은 어떤 역량과 특성을 더 선호하며 투자 유무가 결정되는지를 분석해보고자 한다. 결국 기술 역량 또는 사회적 가치 둘중 하나를 내세운다는 것은 기업의 이미지를 나타내는것과 같은 의미이다. 이에 기술역량과 사회적 가치가 기업이미지를 유능 또는 따뜻함 중 어떻게 나타나는지 알아보고 투자 유무에 미치는 영향을 보고자 한다. 본 연구에서는 기술창업 기업 기술 범위를 인공지능(AI), 빅데이터, 사물인터넷(IoT), 바이오(Bio)로 총 4개로 분류하였다. 기술 창업의 기술범위를 독립변수로 설정하였으며 기술창업에서 기술역량 또는 사회적 특성을 내세웠을 때 기업이미지가 유능하게 보여지는지 따뜻하게 보여지는지를 알아보고자 한다. 기업이미지가 유능함 또는 따뜻함으로 비춰졌을 때 벤처투자에서 투자 유무가 결정되는지를 검증하고자 한다. 검증 방법에서는 벤처투자자가 아닌 창업교육을 이수하는 대학생들을 대상으로 모의투자를 통해 연구를 진행하고자 한다.

  • PDF

Building Modeling for Unstructured Data Analysis Using Big Data Processing Technology (빅데이터 처리 기술을 활용한 비정형데이터 분석 모델링 구축)

  • Kim, Jung-Hoon;Kim, Sung-Jin;Kwon, Gi-Yeol;Ju, Da-Hye;Oh, Jae-Yong;Lee, Jun-Dong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.253-255
    • /
    • 2020
  • 기업 및 기관 데이터는 워드프로세서, 프레젠테이션, 이메일, open api, 엑셀, XML, JSON 등과 같은 텍스트 기반의 비정형 데이터로 구성되어 있습니다. 텍스트 마이닝(Textmining)을 통해서 자연어 처리 및 기계학습 등의 기술을 이용하여 정보의 추출부터 요약·분류·군집·연관도 분석 등의 과정을 수행울 진행한다. 다양한 시각화 데이터를 보여줄 수 있는 다양한 모델 구축을 진행한 후 민원 신청 내용을 분석 및 변환 작업을 진행한다. 본 논문은 AI 기술과 빅데이터를 활용하여 민원을 분석을 하여 알맞은 부서에 민원을 자동으로 할당해 주는 기술을 다룬다.

  • PDF

Face Emotion Recognition using ResNet with Identity-CBAM (Identity-CBAM ResNet 기반 얼굴 감정 식별 모듈)

  • Oh, Gyutea;Kim, Inki;Kim, Beomjun;Gwak, Jeonghwan
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.559-561
    • /
    • 2022
  • 인공지능 시대에 들어서면서 개인 맞춤형 환경을 제공하기 위하여 사람의 감정을 인식하고 교감하는 기술이 많이 발전되고 있다. 사람의 감정을 인식하는 방법으로는 얼굴, 음성, 신체 동작, 생체 신호 등이 있지만 이 중 가장 직관적이면서도 쉽게 접할 수 있는 것은 표정이다. 따라서, 본 논문에서는 정확도 높은 얼굴 감정 식별을 위해서 Convolution Block Attention Module(CBAM)의 각 Gate와 Residual Block, Skip Connection을 이용한 Identity- CBAM Module을 제안한다. CBAM의 각 Gate와 Residual Block을 이용하여 각각의 표정에 대한 핵심 특징 정보들을 강조하여 Context 한 모델로 변화시켜주는 효과를 가지게 하였으며 Skip-Connection을 이용하여 기울기 소실 및 폭발에 강인하게 해주는 모듈을 제안한다. AI-HUB의 한국인 감정 인식을 위한 복합 영상 데이터 세트를 이용하여 총 6개의 클래스로 구분하였으며, F1-Score, Accuracy 기준으로 Identity-CBAM 모듈을 적용하였을 때 Vanilla ResNet50, ResNet101 대비 F1-Score 0.4~2.7%, Accuracy 0.18~2.03%의 성능 향상을 달성하였다. 또한, Guided Backpropagation과 Guided GradCam을 통해 시각화하였을 때 중요 특징점들을 더 세밀하게 표현하는 것을 확인하였다. 결과적으로 이미지 내 표정 분류 Task에서 Vanilla ResNet50, ResNet101을 사용하는 것보다 Identity-CBAM Module을 함께 사용하는 것이 더 적합함을 입증하였다.

Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models (BERT를 활용한 속성기반 감성분석: 속성카테고리 감성분류 모델 개발)

  • Park, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.1-25
    • /
    • 2020
  • Sentiment Analysis (SA) is a Natural Language Processing (NLP) task that analyzes the sentiments consumers or the public feel about an arbitrary object from written texts. Furthermore, Aspect-Based Sentiment Analysis (ABSA) is a fine-grained analysis of the sentiments towards each aspect of an object. Since having a more practical value in terms of business, ABSA is drawing attention from both academic and industrial organizations. When there is a review that says "The restaurant is expensive but the food is really fantastic", for example, the general SA evaluates the overall sentiment towards the 'restaurant' as 'positive', while ABSA identifies the restaurant's aspect 'price' as 'negative' and 'food' aspect as 'positive'. Thus, ABSA enables a more specific and effective marketing strategy. In order to perform ABSA, it is necessary to identify what are the aspect terms or aspect categories included in the text, and judge the sentiments towards them. Accordingly, there exist four main areas in ABSA; aspect term extraction, aspect category detection, Aspect Term Sentiment Classification (ATSC), and Aspect Category Sentiment Classification (ACSC). It is usually conducted by extracting aspect terms and then performing ATSC to analyze sentiments for the given aspect terms, or by extracting aspect categories and then performing ACSC to analyze sentiments for the given aspect category. Here, an aspect category is expressed in one or more aspect terms, or indirectly inferred by other words. In the preceding example sentence, 'price' and 'food' are both aspect categories, and the aspect category 'food' is expressed by the aspect term 'food' included in the review. If the review sentence includes 'pasta', 'steak', or 'grilled chicken special', these can all be aspect terms for the aspect category 'food'. As such, an aspect category referred to by one or more specific aspect terms is called an explicit aspect. On the other hand, the aspect category like 'price', which does not have any specific aspect terms but can be indirectly guessed with an emotional word 'expensive,' is called an implicit aspect. So far, the 'aspect category' has been used to avoid confusion about 'aspect term'. From now on, we will consider 'aspect category' and 'aspect' as the same concept and use the word 'aspect' more for convenience. And one thing to note is that ATSC analyzes the sentiment towards given aspect terms, so it deals only with explicit aspects, and ACSC treats not only explicit aspects but also implicit aspects. This study seeks to find answers to the following issues ignored in the previous studies when applying the BERT pre-trained language model to ACSC and derives superior ACSC models. First, is it more effective to reflect the output vector of tokens for aspect categories than to use only the final output vector of [CLS] token as a classification vector? Second, is there any performance difference between QA (Question Answering) and NLI (Natural Language Inference) types in the sentence-pair configuration of input data? Third, is there any performance difference according to the order of sentence including aspect category in the QA or NLI type sentence-pair configuration of input data? To achieve these research objectives, we implemented 12 ACSC models and conducted experiments on 4 English benchmark datasets. As a result, ACSC models that provide performance beyond the existing studies without expanding the training dataset were derived. In addition, it was found that it is more effective to reflect the output vector of the aspect category token than to use only the output vector for the [CLS] token as a classification vector. It was also found that QA type input generally provides better performance than NLI, and the order of the sentence with the aspect category in QA type is irrelevant with performance. There may be some differences depending on the characteristics of the dataset, but when using NLI type sentence-pair input, placing the sentence containing the aspect category second seems to provide better performance. The new methodology for designing the ACSC model used in this study could be similarly applied to other studies such as ATSC.

Analysis of the Status of Natural Language Processing Technology Based on Deep Learning (딥러닝 중심의 자연어 처리 기술 현황 분석)

  • Park, Sang-Un
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.63-81
    • /
    • 2021
  • The performance of natural language processing is rapidly improving due to the recent development and application of machine learning and deep learning technologies, and as a result, the field of application is expanding. In particular, as the demand for analysis on unstructured text data increases, interest in NLP(Natural Language Processing) is also increasing. However, due to the complexity and difficulty of the natural language preprocessing process and machine learning and deep learning theories, there are still high barriers to the use of natural language processing. In this paper, for an overall understanding of NLP, by examining the main fields of NLP that are currently being actively researched and the current state of major technologies centered on machine learning and deep learning, We want to provide a foundation to understand and utilize NLP more easily. Therefore, we investigated the change of NLP in AI(artificial intelligence) through the changes of the taxonomy of AI technology. The main areas of NLP which consists of language model, text classification, text generation, document summarization, question answering and machine translation were explained with state of the art deep learning models. In addition, major deep learning models utilized in NLP were explained, and data sets and evaluation measures for performance evaluation were summarized. We hope researchers who want to utilize NLP for various purposes in their field be able to understand the overall technical status and the main technologies of NLP through this paper.

Detection Fastener Defect using Semi Supervised Learning and Transfer Learning (준지도 학습과 전이 학습을 이용한 선로 체결 장치 결함 검출)

  • Sangmin Lee;Seokmin Han
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.91-98
    • /
    • 2023
  • Recently, according to development of artificial intelligence, a wide range of industry being automatic and optimized. Also we can find out some research of using supervised learning for deteceting defect of railway in domestic rail industry. However, there are structures other than rails on the track, and the fastener is a device that binds the rail to other structures, and periodic inspections are required to prevent safety accidents. In this paper, we present a method of reducing cost for labeling using semi-supervised and transfer model trained on rail fastener data. We use Resnet50 as the backbone network pretrained on ImageNet. At first we randomly take training data from unlabeled data and then labeled that data to train model. After predict unlabeled data by trained model, we adopted a method of adding the data with the highest probability for each class to the training data by a predetermined size. Futhermore, we also conducted some experiments to investigate the influence of the number of initially labeled data. As a result of the experiment, model reaches 92% accuracy which has a performance difference of around 5% compared to supervised learning. This is expected to improve the performance of the classifier by using relatively few labels without additional labeling processes through the proposed method.

A School-tailored High School Integrated Science Q&A Chatbot with Sentence-BERT: Development and One-Year Usage Analysis (인공지능 문장 분류 모델 Sentence-BERT 기반 학교 맞춤형 고등학교 통합과학 질문-답변 챗봇 -개발 및 1년간 사용 분석-)

  • Gyeongmo Min;Junehee Yoo
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.3
    • /
    • pp.231-248
    • /
    • 2024
  • This study developed a chatbot for first-year high school students, employing open-source software and the Korean Sentence-BERT model for AI-powered document classification. The chatbot utilizes the Sentence-BERT model to find the six most similar Q&A pairs to a student's query and presents them in a carousel format. The initial dataset, built from online resources, was refined and expanded based on student feedback and usability throughout over the operational period. By the end of the 2023 academic year, the chatbot integrated a total of 30,819 datasets and recorded 3,457 student interactions. Analysis revealed students' inclination to use the chatbot when prompted by teachers during classes and primarily during self-study sessions after school, with an average of 2.1 to 2.2 inquiries per session, mostly via mobile phones. Text mining identified student input terms encompassing not only science-related queries but also aspects of school life such as assessment scope. Topic modeling using BERTopic, based on Sentence-BERT, categorized 88% of student questions into 35 topics, shedding light on common student interests. A year-end survey confirmed the efficacy of the carousel format and the chatbot's role in addressing curiosities beyond integrated science learning objectives. This study underscores the importance of developing chatbots tailored for student use in public education and highlights their educational potential through long-term usage analysis.

A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering (생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법)

  • Jeong Young Sang;Ji Seung Hyun;Kwon Da Rong Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.481-492
    • /
    • 2023
  • This study explores how to build a Korean dataset to extract information from text using generative large language models. In modern society, mixed information circulates rapidly, and effectively categorizing and extracting it is crucial to the decision-making process. However, there is still a lack of Korean datasets for training. To overcome this, this study attempts to extract information using text-based zero-shot learning using a generative large language model to build a purposeful Korean dataset. In this study, the language model is instructed to output the desired result through prompt engineering in the form of "system"-"instruction"-"source input"-"output format", and the dataset is built by utilizing the in-context learning characteristics of the language model through input sentences. We validate our approach by comparing the generated dataset with the existing benchmark dataset, and achieve 25.47% higher performance compared to the KLUE-RoBERTa-large model for the relation information extraction task. The results of this study are expected to contribute to AI research by showing the feasibility of extracting knowledge elements from Korean text. Furthermore, this methodology can be utilized for various fields and purposes, and has potential for building various Korean datasets.

Tax Judgment Analysis and Prediction using NLP and BiLSTM (NLP와 BiLSTM을 적용한 조세 결정문의 분석과 예측)

  • Lee, Yeong-Keun;Park, Koo-Rack;Lee, Hoo-Young
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.181-188
    • /
    • 2021
  • Research and importance of legal services applied with AI so that it can be easily understood and predictable in difficult legal fields is increasing. In this study, based on the decision of the Tax Tribunal in the field of tax law, a model was built through self-learning through information collection and data processing, and the prediction results were answered to the user's query and the accuracy was verified. The proposed model collects information on tax decisions and extracts useful data through web crawling, and generates word vectors by applying Word2Vec's Fast Text algorithm to the optimized output through NLP. 11,103 cases of information were collected and classified from 2017 to 2019, and verified with 70% accuracy. It can be useful in various legal systems and prior research to be more efficient application.

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.