• Title/Summary/Keyword: AI 분류 모델

Search Result 224, Processing Time 0.025 seconds

Grade Analysis and Two-Stage Evaluation of Beef Carcass Image Using Deep Learning (딥러닝을 이용한 소도체 영상의 등급 분석 및 단계별 평가)

  • Kim, Kyung-Nam;Kim, Seon-Jong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.385-391
    • /
    • 2022
  • Quality evaluation of beef carcasses is an important issue in the livestock industry. Recently, through the AI monitor system based on artificial intelligence, the quality manager can receive help in making accurate decisions based on the analysis of beef carcass images or result information. This artificial intelligence dataset is an important factor in judging performance. Existing datasets may have different surface orientation or resolution. In this paper, we proposed a two-stage classification model that can efficiently manage the grades of beef carcass image using deep learning. And to overcome the problem of the various conditions of the image, a new dataset of 1,300 images was constructed. The recognition rate of deep network for 5-grade classification using the new dataset was 72.5%. Two-stage evaluation is a method to increase reliability by taking advantage of the large difference between grades 1++, 1+, and grades 1 and 2 and 3. With two experiments using the proposed two stage model, the recognition rates of 73.7% and 77.2% were obtained. As this, The proposed method will be an efficient method if we have a dataset with 100% recognition rate in the first stage.

Big Data Management in Structured Storage Based on Fintech Models for IoMT using Machine Learning Techniques (기계학습법을 이용한 IoMT 핀테크 모델을 기반으로 한 구조화 스토리지에서의 빅데이터 관리 연구)

  • Kim, Kyung-Sil
    • Advanced Industrial SCIence
    • /
    • v.1 no.1
    • /
    • pp.7-15
    • /
    • 2022
  • To adopt the development in the medical scenario IoT developed towards the advancement with the processing of a large amount of medical data defined as an Internet of Medical Things (IoMT). The vast range of collected medical data is stored in the cloud in the structured manner to process the collected healthcare data. However, it is difficult to handle the huge volume of the healthcare data so it is necessary to develop an appropriate scheme for the healthcare structured data. In this paper, a machine learning mode for processing the structured heath care data collected from the IoMT is suggested. To process the vast range of healthcare data, this paper proposed an MTGPLSTM model for the processing of the medical data. The proposed model integrates the linear regression model for the processing of healthcare information. With the developed model outlier model is implemented based on the FinTech model for the evaluation and prediction of the COVID-19 healthcare dataset collected from the IoMT. The proposed MTGPLSTM model comprises of the regression model to predict and evaluate the planning scheme for the prevention of the infection spreading. The developed model performance is evaluated based on the consideration of the different classifiers such as LR, SVR, RFR, LSTM and the proposed MTGPLSTM model and the different size of data as 1GB, 2GB and 3GB is mainly concerned. The comparative analysis expressed that the proposed MTGPLSTM model achieves ~4% reduced MAPE and RMSE value for the worldwide data; in case of china minimal MAPE value of 0.97 is achieved which is ~ 6% minimal than the existing classifier leads.

Implementation of the Stone Classification with AI Algorithm Based on VGGNet Neural Networks (VGGNet을 활용한 석재분류 인공지능 알고리즘 구현)

  • Choi, Kyung Nam
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2021
  • Image classification through deep learning on the image from photographs has been a very active research field for the past several years. In this paper, we propose a method of automatically discriminating stone images from domestic source through deep learning, which is to use Python's hash library to scan 300×300 pixel photo images of granites such as Hwangdeungseok, Goheungseok, and Pocheonseok, performing data preprocessing to create learning images by examining duplicate images for each stone, removing duplicate images with the same hash value as a result of the inspection, and deep learning by stone. In addition, to utilize VGGNet, the size of the images for each stone is resized to 224×224 pixels, learned in VGG16 where the ratio of training and verification data for learning is 80% versus 20%. After training of deep learning, the loss function graph and the accuracy graph were generated, and the prediction results of the deep learning model were output for the three kinds of stone images.

Research on Deep Learning Performance Improvement for Similar Image Classification (유사 이미지 분류를 위한 딥 러닝 성능 향상 기법 연구)

  • Lim, Dong-Jin;Kim, Taehong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.1-9
    • /
    • 2021
  • Deep learning in computer vision has made accelerated improvement over a short period but large-scale learning data and computing power are still essential that required time-consuming trial and error tasks are involved to derive an optimal network model. In this study, we propose a similar image classification performance improvement method based on CR (Confusion Rate) that considers only the characteristics of the data itself regardless of network optimization or data reinforcement. The proposed method is a technique that improves the performance of the deep learning model by calculating the CRs for images in a dataset with similar characteristics and reflecting it in the weight of the Loss Function. Also, the CR-based recognition method is advantageous for image identification with high similarity because it enables image recognition in consideration of similarity between classes. As a result of applying the proposed method to the Resnet18 model, it showed a performance improvement of 0.22% in HanDB and 3.38% in Animal-10N. The proposed method is expected to be the basis for artificial intelligence research using noisy labeled data accompanying large-scale learning data.

SCLC-Edge Detection Algorithm for Skin Cancer Classification (피부암 병변 분류를 위한 SCLC-Edge 검출 알고리즘)

  • June-Young Park;Chang-Min Kim;Roy C. Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.256-263
    • /
    • 2022
  • Skin cancer is one of the most common diseases in the world, and the incidence rate in Korea has increased by about 100% over the past five years. In the United States, more than 5 million people are diagnosed with skin cancer every year. Skin cancer mainly occurs when skin tissue is damaged for a long time due to exposure to ultraviolet rays. Melanoma, a malignant tumor of skin cancer, is similar in appearance to Atypical melanocytic nevus occurring on the skin, making it difficult for the general public to be aware of it unless secondary signs occur. In this paper, we propose a skin cancer lesion edge detection algorithm and a deep learning model, CRNN, which performs skin cancer lesion classification for early detection and classification of these skin cancers. As a result of the experiment, when using the contour detection algorithm proposed in this paper, the classification accuracy was the highest at 97%. For the Canny algorithm, 78% was shown, 55% for Sobel, and 46% for Laplacian.

A Machine Learning Model Learning and Utilization Education Curriculum for Non-majors (비전공자 대상 머신러닝 모델 학습 및 활용교육 커리큘럼)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • In this paper, a basic machine learning model learning and utilization education curriculum for non-majors is proposed, and an education method using Orange machine learning model learning and analysis tools is proposed. Orange is an open-source machine learning and data visualization tool that can create machine learning models by learning data using visual widgets without complex programming. Orange is a platform that is widely used by non-major undergraduates to expert groups. In this paper, a basic machine learning model learning and utilization education curriculum and weekly practice contents for one semester are proposed. In addition, in order to demonstrate the reality of practice contents for machine learning model learning and utilization, we used the Orange tool to learn machine learning models from categorical data samples and numerical data samples, and utilized the models. Thus, use cases for predicting the outcome of the population were proposed. Finally, the educational satisfaction of this curriculum is surveyed and analyzed for non-majors.

A Study on Drift Phenomenon of Trained ML (학습된 머신러닝의 표류 현상에 관한 고찰)

  • Shin, ByeongChun;Cha, YoonSeok;Kim, Chaeyun;Cha, ByungRae
    • Smart Media Journal
    • /
    • v.11 no.7
    • /
    • pp.61-69
    • /
    • 2022
  • In the learned machine learning, the performance of machine learning degrades at the same time as drift occurs in terms of learning models and learning data over time. As a solution to this problem, I would like to propose the concept and evaluation method of ML drift to determine the re-learning period of machine learning. An XAI test and an XAI test of an apple image were performed according to strawberry and clarity. In the case of strawberries, the change in the XAI analysis of ML models according to the clarity value was insignificant, and in the case of XAI of apple image, apples normally classified objects and heat map areas, but in the case of apple flowers and buds, the results were insignificant compared to strawberries and apples. This is expected to be caused by the lack of learning images of apple flowers and buds, and more apple flowers and buds will be studied and tested in the future.

AI Crime Prediction Modeling Based on Judgment and the 8 Principles (판결문과 8하원칙에 기반한 인공지능 범죄 예측 모델링)

  • Hye-sung Jung;Eun-bi Cho;Jeong-hyeon Chang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.99-105
    • /
    • 2023
  • In the 4th industrial revolution, the field of criminal justice is paying attention to Legaltech using artificial intelligence to provide efficient legal services. This paper attempted to create a crime prediction model that can apply Recurrent Neural Network(RNN) to increase the potential for using legal technology in the domestic criminal justice field. To this end, the crime process was divided into pre, during, and post stages based on the criminal facts described in the judgment, utilizing crime script analysis techniques. In addition, at each time point, the method and evidence of crime were classified into objects, actions, and environments based on the sentence composition elements and the 8 principles of investigation. The case summary analysis framework derived from this study can contribute to establishing situational crime prevention strategies because it is easy to identify typical patterns of specific crime methods. Furthermore, the results of this study can be used as a useful reference for research on generating crime situation prediction data based on RNN models in future follow-up studies.

Performance Comparison and Error Analysis of Korean Bio-medical Named Entity Recognition (한국어 생의학 개체명 인식 성능 비교와 오류 분석)

  • Jae-Hong Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.701-708
    • /
    • 2024
  • The advent of transformer architectures in deep learning has been a major breakthrough in natural language processing research. Object name recognition is a branch of natural language processing and is an important research area for tasks such as information retrieval. It is also important in the biomedical field, but the lack of Korean biomedical corpora for training has limited the development of Korean clinical research using AI. In this study, we built a new biomedical corpus for Korean biomedical entity name recognition and selected language models pre-trained on a large Korean corpus for transfer learning. We compared the name recognition performance of the selected language models by F1-score and the recognition rate by tag, and analyzed the errors. In terms of recognition performance, KlueRoBERTa showed relatively good performance. The error analysis of the tagging process shows that the recognition performance of Disease is excellent, but Body and Treatment are relatively low. This is due to over-segmentation and under-segmentation that fails to properly categorize entity names based on context, and it will be necessary to build a more precise morphological analyzer and a rich lexicon to compensate for the incorrect tagging.

Damage Detection of Non-Ballasted Plate-Girder Railroad Bridge through Machine Learning Based on Static Strain Data (정적 변형률 데이터 기반 머신러닝에 의한 무도상 철도 판형교의 손상 탐지)

  • Moon, Taeuk;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.206-216
    • /
    • 2020
  • As the number of aging railway bridges in Korea increases, maintenance costs due to aging are increasing and continuous management is becoming more important. However, while the number of old facilities to be managed increases, there is a shortage of professional personnel capable of inspecting and diagnosing these old facilities. To solve these problems, this study presents an improved model that can detect Local damage to structures using machine learning techniques of AI technology. To construct a damage detection machine learning model, an analysis model of the bridge was set by referring to the design drawing of a non-ballasted plate-girder railroad bridge. Static strain data according to the damage scenario was extracted with the analysis model, and the Local damage index based on the reliability of the bridge was presented using statistical techniques. Damage was performed in a three-step process of identifying the damage existence, the damage location, and the damage severity. In the estimation of the damage severity, a linear regression model was additionally considered to detect random damage. Finally, the random damage location was estimated and verified using a machine learning-based damage detection classification learning model and a regression model.