• Title/Summary/Keyword: AI 분류 모델

Search Result 224, Processing Time 0.032 seconds

A personalized exercise recommendation system using dimension reduction algorithms

  • Lee, Ha-Young;Jeong, Ok-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.19-28
    • /
    • 2021
  • Nowadays, interest in health care is increasing due to Coronavirus (COVID-19), and a lot of people are doing home training as there are more difficulties in using fitness centers and public facilities that are used together. In this paper, we propose a personalized exercise recommendation algorithm using personalized propensity information to provide more accurate and meaningful exercise recommendation to home training users. Thus, we classify the data according to the criteria for obesity with a k-nearest neighbor algorithm using personal information that can represent individuals, such as eating habits information and physical conditions. Furthermore, we differentiate the exercise dataset by the level of exercise activities. Based on the neighborhood information of each dataset, we provide personalized exercise recommendations to users through a dimensionality reduction algorithm (SVD) among model-based collaborative filtering methods. Therefore, we can solve the problem of data sparsity and scalability of memory-based collaborative filtering recommendation techniques and we verify the accuracy and performance of the proposed algorithms.

An Influence of Artificial Intelligence Attributes on the Adoption Level of Artificial Intelligence-Enabled Products (인공지능 기반 제품 수용 정도에 인공지능 속성이 미치는 영향 연구)

  • Kwonsang Sohn;Kun Woo Yoo;Ohbyung Kwon
    • Information Systems Review
    • /
    • v.21 no.3
    • /
    • pp.111-129
    • /
    • 2019
  • Recently, artificial intelligence (AI)-enabled products and services such as smartphones, smart speakers, chatbots are being released due to advances in AI technology. Thus researchers making effort to reveal that consumers' intention to adopt AI-enabled products. Yet, little is known about the intended adoption of AI-enabled products. Because most of studies has been not consideredthe perceived utility value of consumers for each attribute by classified based on the characteristics of AI-enabled products. Therefore, the purpose of this study is to investigate the difference in importance between attributes that affect the intention to adopt of AI-enabled products. For this, first, identified and classified the attributes of AI-enabled products based on IS Success Model of DeLone and McLean. Second, measured the utility value of each attribute on the adoption of AI-enabled products through conjoint analysis. And we employed construal level theory to see whether there are differences in the relative importance of AI-enabled products attributes depending on the temporal distance. Third, we segmented the market based on the utility value of each respondent through cluster analysis and tried to understand the characteristics and needs of consumers in each segment market. We expect to provide theoretical implications for conceptually structured attributes and factors of AI-enabled products and practical implications for how development efforts of AI-enabled products are needed to reach consumers need for each segment.

Implementation of AI-based Object Recognition Model for Improving Driving Safety of Electric Mobility Aids (객체 인식 모델과 지면 투영기법을 활용한 영상 내 다중 객체의 위치 보정 알고리즘 구현)

  • Dong-Seok Park;Sun-Gi Hong;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.119-125
    • /
    • 2023
  • In this study, we photograph driving obstacle objects such as crosswalks, side spheres, manholes, braille blocks, partial ramps, temporary safety barriers, stairs, and inclined curb that hinder or cause inconvenience to the movement of the vulnerable using electric mobility aids. We develop an optimal AI model that classifies photographed objects and automatically recognizes them, and implement an algorithm that can efficiently determine obstacles in front of electric mobility aids. In order to enable object detection to be AI learning with high probability, the labeling form is labeled as a polygon form when building a dataset. It was developed using a Mask R-CNN model in Detectron2 framework that can detect objects labeled in the form of polygons. Image acquisition was conducted by dividing it into two groups: the general public and the transportation weak, and image information obtained in two areas of the test bed was secured. As for the parameter setting of the Mask R-CNN learning result, it was confirmed that the model learned with IMAGES_PER_BATCH: 2, BASE_LEARNING_RATE 0.001, MAX_ITERATION: 10,000 showed the highest performance at 68.532, so that the user can quickly and accurately recognize driving risks and obstacles.

The digital transformation of mask dance movement in intangible cultural asset based on human pose recognition (휴먼포즈 인식을 적용한 무형문화재 탈춤 동작 디지털전환)

  • SooHyuong Kang;SungGeon Park;KwangYoung Park
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.678-680
    • /
    • 2023
  • 본 연구는 2022년 유네스코 인류무형유산 대표목록에 등재된 탈춤 동작을 디지털화하여 후속 세대에게 정보를 제공하는 것을 목적으로 한다. 데이터 수집은 국가무형문화제로 지정된 탈춤 단체 13개, 시도무형문화재 단체 5개에 소속된 무형문화재, 전승자 39명이 관성식 모션 캡처 장비를 착용하고, 8대의 카메라를 이용하여 수집하였다. 데이터 가공은 바운딩박스를 수행하였고, 탈춤동작 추정은 YOLO v8을 사용하였고 탈춤 동작 분류는 YOLO v8에 CNN모델을 결합하여 130개의 탈춤을 분류하였다. 연구결과, mAP-50은 0.953, mAP50-95는 0.596, Accuracy 70%를 달성하였다. 향후 학습용 데이터셋 구축량이 늘어나고, 데이터 품질이 개선된다면 탈춤 분류 성능은 더욱 개선될 것이라 기대한다.

Protocol Classification Based on Traffic Flow and Deep Learning (트래픽 플로우 및 딥러닝 기반의 프로토콜 분류 방법론)

  • Ye-Jin Park;Yeong-Pil Cho
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.836-838
    • /
    • 2024
  • 본 논문은 현대 사회에서 급증하는 VPN의 악용 가능성을 인지하고 VPN과 Non-VPN 트래픽 구별의 중요도를 강조한다. 전통적인 포트 기반 분류와 패킷 분석 접근법의 한계를 넘어서기 위해 트래픽 플로우 특징과 인공지능(AI) 기술을 결합하여 VPN과 Non-VPN 프로토콜을 구별하는 새로운 방법을 제안한다. 직접 수집한 패킷 데이터셋을 사용하여 트래픽 플로우 특징을 추출하고, 패킷의 페이로드와 결합해 이미지를 생성한다. 이를 CNN 모델에 적용함으로써 높은 정확도로 프로토콜을 구별한다. 실험 결과, 제안된 방법은 99.71%의 높은 정확도를 달성하여 트래픽 분류 및 네트워크 보안 강화에 기여할 수 있는 방법론임을 입증한다.

Implementation of CNN-based Classification Training Model for Unstructured Fashion Image Retrieval using Preprocessing with MASK R-CNN (비정형 패션 이미지 검색을 위한 MASK R-CNN 선형처리 기반 CNN 분류 학습모델 구현)

  • Seunga, Cho;Hayoung, Lee;Hyelim, Jang;Kyuri, Kim;Hyeon-Ji, Lee;Bong-Ki, Son;Jaeho, Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • In this paper, we propose a detailed component image classification algorithm by fashion item for unstructured data retrieval in the fashion field. Due to the COVID-19 environment, AI-based online shopping malls are increasing recently. However, there is a limit to accurate unstructured data search with existing keyword search and personalized style recommendations based on user surfing behavior. In this study, pre-processing using Mask R-CNN was conducted using images crawled from online shopping sites and then classified components for each fashion item through CNN. We obtain the accuaracy for collar of the shirt's as 93.28%, the pattern of the shirt as 98.10%, the 3 classese fit of the jeans as 91.73%, And, we further obtained one for the 4 classes fit of jeans as 81.59% and the color of the jeans as 93.91%. At the results for the decorated items, we also obtained the accuract of the washing of the jeans as 91.20% and the demage of jeans accuaracy as 92.96%.

Deobfuscation Processing and Deep Learning-Based Detection Method for PowerShell-Based Malware (파워쉘 기반 악성코드에 대한 역난독화 처리와 딥러닝 기반 탐지 방법)

  • Jung, Ho-jin;Ryu, Hyo-gon;Jo, Kyu-whan;Lee, Sangkyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.501-511
    • /
    • 2022
  • In 2021, ransomware attacks became popular, and the number is rapidly increasing every year. Since PowerShell is used as the primary ransomware technique, the need for PowerShell-based malware detection is ever increasing. However, the existing detection techniques have limits in that they cannot detect obfuscated scripts or require a long processing time for deobfuscation. This paper proposes a simple and fast deobfuscation method and a deep learning-based classification model that can detect PowerShell-based malware. Our technique is composed of Word2Vec and a convolutional neural network to learn the meaning of a script extracting important features. We tested the proposed model using 1400 malicious codes and 8600 normal scripts provided by the AI-based PowerShell malicious script detection track of the 2021 Cybersecurity AI/Big Data Utilization Contest. Our method achieved 5.04 times faster deobfuscation than the existing methods with a perfect success rate and high detection performance with FPR of 0.01 and TPR of 0.965.

A Study of AI-based Monitoring Techniques for Land-based Debris in Stream (AI기반 하천 부유쓰레기 모니터링 기술 연구)

  • Kyungsu Lee;Haein Yoon;Jonghwa Won;Sang Hwa Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.137-137
    • /
    • 2023
  • 해양쓰레기는 해안의 심미적 가치 저하뿐만 아니라 생태계 파괴, 유령 어업에 따른 수산업 피해 등의 사회적·환경적 문제를 발생시키며, 그중 70% 이상은 육상 기인으로 플라스틱 및 기타 쓰레기가 주를 이루는 해외와 달리 국내의 경우 다량의 초목류를 포함하고 있다. 다양한 부유쓰레기에 대한 기존의 해양쓰레기량 추정의 한계와 하천·하구 쓰레기 수거의 효율화를 위해 해양으로 유입되는 부유쓰레기 방지를 위한 실효성 있는 대책 수립이 필요한 실정이다. 본 연구는 해양 유입 전 하천의 차단시설에 차집된 부유쓰레기의 수거 효율화 및 지속가능한 해양쓰레기 데이터 구축을 위해 AI기반의 기술을 통해 부유쓰레기 성상 분석 기법(Object Detection)과 차집량 분석 기법(Semantic Segmentation)을 활용하였다. 실제와 유사한 데이터 수집을 위해 다양한 하천 환경(정수조, 소하천, 급경사수로)에 대해 탁도(녹조, 유사), 광량, 쓰레기형상, 초목류 함량, 날씨(소하천), 유속(급경사수로) 등의 실험조건에 대하여 해양쓰레기 분류 기준 및 통계를 바탕으로 부유쓰레기 종류 선정하여 학습을 위한 데이터를 수집하였다. 학습 목적에 따라 구분하여 라벨링(Bounding box, Polygon)을 수행하고, 각 분석 기법별 전이학습을 통해 Phase 1(정수조), Phase 2(소하천), Phase 3(급경사수로) 순서로 모델을 고도화하였다. 성상 분석을 위해 YOLO v4를 활용하여 Train, Test DataSet(9:1)을 구성하고 학습 및 평가는 Iteration마다의 mAP, loss 값을 통해 비교하였으며, 학습 Phase에 따라 모델 고도화로 Test Set의 mAP 값이 성상별로 높아짐을 확인하였으며, 차집량 분석을 위해 Unet을 활용하여 Train, Test, Validation DataSet(8.5:1:0.5)을 구성하고 epoch별 IoU(intersection over Union), F1-score, loss 값을 비교하여 정성적, 정량적 평가 모두 Phase 3에서 가장 높은 성능을 확인하였다. 향후 하천 환경에서의 다양한 영양인자별 분석을 통해 주요 영향인자 도출 및 Hyper Parameter 최적화를 통한 모델 고도화로 인해 활용성이 높아질 것으로 판단된다.

  • PDF

Enhancing Object Recognition in the Defense Sector: A Research Study on Partially Obscured Objects (국방 분야에서 일부 노출된 물체 인식 향상에 대한 연구)

  • Yeong-hoon Kim;Hyun Kwon
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.77-82
    • /
    • 2024
  • Recent research has seen significant improvements in various object detection and classification models overall. However, the study of object detection and classification in situations where objects are partially obscured remains an intriguing research topic. Particularly in the military domain, unmanned combat systems are often used to detect and classify objects, which are typically partially concealed or camouflaged in military scenarios. In this study, a method is proposed to enhance the classification performance of partially obscured objects. This method involves adding occlusions to specific parts of object images, considering the surrounding environment, and has been shown to improve the classification performance for concealed and obscured objects. Experimental results demonstrate that the proposed method leads to enhanced object classification compared to conventional methods for concealed and obscured objects.

Development of Artificial Intelligence Convergence Education Program for Elementary Education Using Decision Tree (의사 결정 나무를 활용한 초등 인공지능 융합 교육 프로그램 개발)

  • Hyunwoo Moon;Youngjun Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.227-228
    • /
    • 2023
  • 정부의 인공지능 국가전략을 통해 인공지능 교육은 초등학교에서도 필수교육으로 대두되고 있다. 또한 인공지능 소양을 습득하기 위해 타 교과와 융합한 인공지능 융합 교육의 필요성이 증가하고 있고, 인공지능 발달에 대한 수학의 역할을 고려하여 수학 교과를 통해 인공지능의 이해를 기르는 것이 강조되고 있다. 따라서 본 연구에서는 수학 교과와 인공지능 교과가 융합한 인공지능 융합 교육 프로그램을 개발하기 위해 초등학교 3~4학년 수학 교과의 도형 분류를 의사 결정 나무 모델을 활용하여 가르치는 인공지능 융합 교육 프로그램을 개발하였다. 본 연구를 통해 개발된 프로그램은 초등학생의 인공지능 개념학습을 통한 인공지능 기초소양 함양뿐만 아니라 수학 교과의 이해 및 성취도 향상에 도움이 될 것으로 기대된다.

  • PDF