• Title/Summary/Keyword: AI 모형

Search Result 180, Processing Time 0.03 seconds

Analysis of the Government's Introduction to Artificial Intelligence(AI): Focusing on the Central Government Organizations (정부의 인공지능 도입에 관한 분석: 중앙정부조직을 중심으로)

  • Han, MyungSeong
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.281-293
    • /
    • 2022
  • The necessity for introducing artificial intelligence(AI) into the public sector to form an intelligent government has been emerging. This study set 'Organizational Agility', 'Exploitation & Exploration Learning', and 'E-government Capability' as independent variables for the introduction of AI in central government. Dependent variables were set on whether AI was adopted in the central government organization 'Bu(mainly conducts policy planning)', and 'Cheong(mainly performs policy execution)'. Logistic regression analysis was performed on each of the two models. As a result, it was derived that ministry Bu adopted AI as organizational agility increased, and ministry Chung adopted AI as e-government capability increased. Particularly, it was identified that the effect of exploitation learning for Cheong organizations offset the influence of AI introduction according to e-government capabilities, while exploratory organizational learning facilitated the AI introduction. This study is meaningful for suggesting a strategy for adopting AI in government.

Effects on the continuous use intention of AI-based voice assistant services: Focusing on the interaction between trust in AI and privacy concerns (인공지능 기반 음성비서 서비스의 지속이용 의도에 미치는 영향: 인공지능에 대한 신뢰와 프라이버시 염려의 상호작용을 중심으로)

  • Jang, Changki;Heo, Deokwon;Sung, WookJoon
    • Informatization Policy
    • /
    • v.30 no.2
    • /
    • pp.22-45
    • /
    • 2023
  • In research on the use of AI-based voice assistant services, problems related to the user's trust and privacy protection arising from the experience of service use are constantly being raised. The purpose of this study was to investigate empirically the effects of individual trust in AI and online privacy concerns on the continued use of AI-based voice assistants, specifically the impact of their interaction. In this study, question items were constructed based on previous studies, with an online survey conducted among 405 respondents. The effect of the user's trust in AI and privacy concerns on the adoption and continuous use intention of AI-based voice assistant services was analyzed using the Heckman selection model. As the main findings of the study, first, AI-based voice assistant service usage behavior was positively influenced by factors that promote technology acceptance, such as perceived usefulness, perceived ease of use, and social influence. Second, trust in AI had no statistically significant effect on AI-based voice assistant service usage behavior but had a positive effect on continuous use intention. Third, the privacy concern level was confirmed to have the effect of suppressing continuous use intention through interaction with trust in AI. These research results suggest the need to strengthen user experience through user opinion collection and action to improve trust in technology and alleviate users' concerns about privacy as governance for realizing digital government. When introducing artificial intelligence-based policy services, it is necessary to disclose transparently the scope of application of artificial intelligence technology through a public deliberation process, and the development of a system that can track and evaluate privacy issues ex-post and an algorithm that considers privacy protection is required.

Improving reliability of reservoir hydrological data followed by periodic evaluation (주기별 평가에 의한 저수지 수문자료 신뢰도 개선)

  • Jaekyoung Noh;Jaenam Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.106-106
    • /
    • 2023
  • 저수지 수문자료는 강우량, 유입량, 저수량, 방류량이다. 이 중에서 관측되고 있는 것은 저수량과 일부 수로방류량에 불과하다. 그럼에도 모의에 의해 유입량을 고정시키면, 물수지에 의해 방류량을 계산할 수 있다. 그러나 저수량 오차로 모의 유입량과 계산 방류량의 신뢰도는 반드시 확인돼야 한다. 신뢰도가 낮으면 모의 유출량과 계산 방류량을 조정하며 신뢰도를 높여야 한다. 신뢰도는 평가주기가 짧을수록 보장된다. 여기서는 유역면적 218.80km2, 유효저수량 3,494만m3, 수혜면적 5,117ha인 탑정지에 대해 2020년 1월1일부터 12월31일까지 1시간 단위로 1달, 10일, 3일, 2일 간격의 주기로 저수지 운영자료를 생산하고, 그 신뢰도를 평가하여 평가주기가 짧을수록 오차가 감소되는 것을 관찰코자 했다. 1시간 간격의 유입량은 ONE 모형으로 모의했고, 저수지 물수지 모형을 구축하여 모의 유입량에 저수량 변화를 더해 방류량을 계산했다. 또한 저수지 물수지에 의해 저수위를 모의했으며, 관측 저수위와의 오차제곱근(RMSE)으로 신뢰도를 평가한 결과는 다음과 같다. 1달 간격으로 신뢰도를 평가한 경우 RMSE는 132.466m, 10일 간격은 46.922m, 3일 간격은 0.520m, 2일 간격은 0.349m로 나타났다. 위의 결과로부터 저수지 수문자료의 평가주기를 짧게 할수록 신뢰도는 개선된다고 말할 수 있다. 이상의 결과는 과거 자료에 대해 1년 동안 1시간 간격으로 유입량을 모의하고 방류량을 계산한 결과를 고정시키고, 평가주기를 달리하며 수위오차를 분석한 결과이다. 만약 평가주기별로 유입량과 방류량을 실제 상황에 적합하게 조정하면, 그 신뢰도는 훨씬 더 개선될 것이다. 현재 저수지 수위만을 관리하고 있는 현장의 상황에서 이 연구결과가 시사하는 바는 매우 크다. 첨언하면 AI 시대의 핵심은 자료다. AI의 먹이는 자료다. 다시 말해 자료 없는 AI는 시체와 같다. 자료는 기본이고 진실이다. 자료 없는 결과는 가짜다. 또한 위의 결과는 자료는 상시 관찰돼야 한다는 것을 말한다. 1년에 한 번 수문자료를 평가하는 제도로는 고품질의 자료를 생산할 수 없다. 무엇보다 자료는 상시 관찰하는 제도가 정착돼야 하며, 그 때 비로소 AI와 공존과 협력으로 물관리 기술의 혁신을 이룰 것이라 확신한다.

  • PDF

Ethics-Literacy Curriculum Modeling for Ethical Practice of 5G Information Professionals (5G 정보환경 정보전문가를 위한 윤리 리터러시 교육과정 모형연구)

  • Yoo, Sarah
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.1
    • /
    • pp.139-166
    • /
    • 2022
  • Ethical Issues increase when people engage in smart technological systems such as 5G, IoT, Cloud computing services and AI applications. Range of this research is comparison of various literacy concepts and its ethical issues in considering of 5G features and UX. 86 research papers and reports which have been published within the recent 5 years (2017-2022), relating the research subject, are investigated and analyzed. Two results show that various literacies can be grouped into four areas and that some of common issues among those areas as well as unique issues of each area are identified. Based on the literature analysis, an Operational Definition of Ethics-Literacy is presented and the model of ethics-literacy curriculum supporting ethical behavior of 5G information professionals is developed and suggested.

Technology Competitiveness in the AI-Edutech Field: Using Patent Indice and Hurdle Negative Binomial Model (특허 자료를 활용한 AI-에듀테크 분야 국가 간 기술 경쟁력 분석: 특허 통계 지표와 허들 음이항 모델의 활용)

  • Ilyong Ji;Hyun-young Bae
    • Journal of Industrial Convergence
    • /
    • v.22 no.8
    • /
    • pp.1-17
    • /
    • 2024
  • Recently, interest in edutech has been focused on its fusion with AI technology, and the market in this field is expanding. This study aims to analyze the technological competitiveness and key technological areas of major countries in the AI-edutech field. Additionally, considering that AI-edutech is a convergence of AI technology and edutech, the study seeks to examine the path dependence of AI-edutech in each country to determine whether they are based on existing AI technologies or edutech. To this end, AI-edutech patents were collected and competitiveness was analyzed using patent activity, patent impact, and market acquisition indicators. Path dependence for each country was analyzed using the hurdle negative binomial regression model. The analysis results indicate that the major countries in the AI-edutech field are China, South Korea, the United States, India, and Japan. In terms of patent activity, China had the highest level, followed by South Korea. In terms of patent impact and market securing power, the United States was high in both aspects, Japan had high market securing power, and South Korea had high patent influence. The results of the hurdle negative binomial analysis presented unique findings. The logit part results indicated that the possession of existing AI and edutech did not positively affect the emergence of current AI-edutech, but the count part results showed a positive influence. This suggests that, overall, it is difficult to assert that current AI-edutechs are based on past AI and edutechs. However, once some AI-edutechs based on existing AI and edutechs emerge, they are influenced by the existing technologies. These findings provide implications for future research and technological strategies in this field.

The Influence of New Service Means on Customer's Willingness to Buy under the Background of Artificial Intelligence Take the Marketing method of AI medical beauty APP as an example

  • Li, Xiao-Pei;Liu, Zi-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.173-182
    • /
    • 2020
  • The purpose of this paper is to study the influence of new service methods of "artificial intelligence (AI) + medical cosmetology", a new service means, on customers' purchase intentions. To AI medical beauty APP sales as an empirical study. This paper designed Likert seven scale to investigate, using SPSS 24.0 statistical analysis software and AMOS24.0 structural equation software to analyze the survey data. The analysis method uses reliability analysis, validity analysis, and construct equation model analysis. Through empirical research, the following results can be found, 1. The system quality of AI medical beauty app will have a positive impact on perceived usefulness and perceived ease of use. 2. The information quality of AI medical beauty app will have a positive impact on perceived ease of use and perceived usefulness. 3. The service quality of AI medical beauty app will have a positive impact on perceived ease of use and perceived usefulness 4. Consumers' perceived ease of use has a positive impact on perceived usefulness and purchase intention. 5. The usefulness of consumers' notification has a positive effect on purchase intention.

Hybrid Learning-Based AI Education System Design Model (하이브리드 러닝 기반 AI 교육 시스템 구성)

  • Hong, Misun;Bae, JinAh;Park, Jung-Hwan;Cho, Jungwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.188-190
    • /
    • 2022
  • We propose how to configure the AI education system based on the purpose of hybrid learning and the teaching-learning principle. Based on the four components of hybrid learning, we have designed the system conceptual diagram and DB configuration diagram for on-line and offline learning environments for effective AI education. The proposed AI education system model in this paper is expected to be a foundation for maximizing the effectiveness of AI education according to the level and needs of learners and building a more effective learner-centered learning environment in cultivating computational thinking in AI education.

  • PDF

The Perception and Needs Analysis of Early Childhood Teachers for Development of a Play-Based Artificial Intelligence Education Program for 5-Year-Olds (만 5세 대상 놀이중심 인공지능 교육 프로그램 개발을 위한 유아교사의 인식과 요구분석)

  • Park, Jieun;Hong, Misun;Cho, Jungwon
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.39-59
    • /
    • 2022
  • We analyze the perceptions and requirements of early childhood teachers for artificial intelligence(AI) education to develop an AI education program for 5-year-olds. As for the research methodology, we conducted a survey and an in-depth interview to extract the AI educational elements centering on the analysis stage, the first stage of the ADDIE model. The research result is that first, it is necessary to design a curriculum that combines the contents of early childhood education and AI education to be naturally accepted as AI education for 5-year-olds. Second, an evaluation tool for AI education that can showcase the teacher's reflection should be developed systematically. Third, it is necessary to support a play-centered AI education support and environment for early childhood teachers. Lastly, it is essential to establish a system that can be continuously operated in the field of early childhood education in consideration of AI education in the non-curricular curriculum. It is expected that in the future, a play-oriented AI education program for 5-year-olds will be developed to spread awareness of AI education for infants and present an AI education approach for each age and stage of learners.

An Investigation Into the Effects of AI-Based Chemistry I Class Using Classification Models (분류 모델을 활용한 AI 기반 화학 I 수업의 효과에 대한 연구)

  • Heesun Yang;Seonghyeok Ahn;Seung-Hyun Kim;Seong-Joo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.160-175
    • /
    • 2024
  • The purpose of this study is to examine the effects of a Chemistry I class based on an artificial intelligence (AI) classification model. To achieve this, the research investigated the development and application of a class utilizing an AI classification model in Chemistry I classes conducted at D High School in Gyeongbuk during the first semester of 2023. After selecting the curriculum content and AI tools, and determining the curriculum-AI integration education model as well as AI hardware and software, we developed detailed activities for the program and applied them in actual classes. Following the implementation of the classes, it was confirmed that students' self-efficacy improved in three aspects: chemistry concept formation, AI value perception, and AI-based maker competency. Specifically, the chemistry classes based on text and image classification models had a positive impact on students' self-efficacy for chemistry concept formation, enhanced students' perception of AI value and interest, and contributed to improving students' AI and physical computing abilities. These results demonstrate the positive impact of the Chemistry I class based on an AI classification model on students, providing evidence of its utility in educational settings.

Research on Advanced Techniques for Dam Operation using Core Technologies of the 4th Industrial Revolution (4차 산업혁명 핵심기술을 도입한 댐운영 고도화 기법 연구)

  • Choi, Hyun Gu;Jeong, Seok Il;Kim, Hwa Young;Chae, Byung Soo;Lim, Tae Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.491-491
    • /
    • 2021
  • 댐·보 운영은 과거부터 많은 양의 데이터를 근간으로 분석 및 의사결정을 진행하였으나, 자연 현상의 복잡성 및 다양한 영향 관계로 인해 기술개발은 답보 상태에 머물러 있다. 또한 댐·보 운영의 기술개발은 개별적인 일부 요소기술에 국한되어 있는 실정으로 댐·보 운영의 전체 의사결정체계에 대한 미래의 방향성에 대한 전략이 부재한 상황이다. 이에 기후변화, 물관리일원화, 환경대응용수의 활용, 복합적 제약사항 도출 등 최적 댐·보 운영을 위한 의사결정지원 고도화에 대한 사회적 니즈가 증가를 반영하고, 기존의 재래적 의사결정지원 시스템 및 홍수분석기술에서 탈피하여 AI, Big Data 등 혁신 기술적용 및 최신기술 트렌드를 반영한 미래 물관리 로드맵의 제시가 필요한 상황이다. 본 연구의 목적은 홍수기 댐운영을 위해 기존 반복 분석하는 일련의 절차 자동화와 운영자의 경험에 따라 달라지는 운영방법의 일반화를 위한 AI의 도입에 있다. 기존 홍수분석체계를 살펴보면 저수지 홍수분석, 저수지 수위계산, 방류량 결정, 분석결과와 제약사항의 비교 같은 일련의 절차에 대해서 합리적인 결과가 도출될 때까지 반복 분석을 수행하여야 한다. 분석모형간 연계와 재래적 방법의 자동화를 도입하면 홍수분석에 소요되는 시간을 줄일 수 있어, 사전에 대비할 수 있는 시간을 추가적으로 확보할 수 있게 된다. 또한 홍수기 댐운영 방법이 운영자의 경험에 의존하다 보니 운영자마다 다른 운영방법을 도출하게 되는데, 과거사례의 최적 운영방안을 학습시킨 AI를 도입하게 되면 일관성있는 최적 댐운영이 가능할 것으로 판단된다. 이에 본 연구에서는 홍수분석 절차의 자동화, DB 및 통계모형 구축, 분석결과 및 제약사항의 직관적인 표출화, AI 도입을 통한 운영방안의 일반화 등 기존 재래기술의 개선을 통해 최적 댐운영 의사결정지원시스템의 고도화를 추진하고자 한다.

  • PDF