본 연구는 새로이 재편되는 AI 상용 미래 시대에서 웹툰 작가가 창작자로서 직업적 계보를 존속시키기 위해 어떠한 역량이 요구될 것인지를 파악하기 위해 진행되었다. 생성형 AI의 기술 발달이 어떻게 이뤄질지 알아보고, 그 시점에서 창작자의 역할이 어떻게 변화되어 갈 것인지에 대해, 웹툰의 실례로 현재와 미래의 AI 기술력과 웹툰의 활용 현황에 대해 각각 알아보고 미래 변화될 웹툰계의 생태 속에서 요구될 작가의 역할에 대해 전망해 보고자 하였다. 그 결과, 미래 AI는 자립적인 존재로 인간과 협업이 가능한 수준으로 인간 작업자를 대체할 것으로 예측됐으며, 그 한계점 역시 드러나, 물리적 기술 측면에서는 AI가 대체할 수 있으나, 인간 공감형 분야만큼은 존속시킬 수 있음을 알아보았다. 스토리 기획자, 시각 연출가, AI 편집자라는 창의적인 영역이 창작자의 역할 모형으로 도출되었다. 또한, 현시점에서의 모호한 용어 정의로 인한 혼란을 해소하고자 AI 3단계 단계별 모형으로 기계형, 인간형, 초월형으로 보다 현실적으로 분리 제안하였다. 이러한 결과를 통해 연구자는 앞으로 유입될 신진 창작자나 기존의 창작자들의 재 역량 개발을 위한 가이드라인으로 새로운 기술인 AI에 대한 부정 수용보다는 협업을 통한 상생임을 제시하였다.
4차산업 혁명이 도래한 이후로 전세계적으로 AI 기술이 유래 없는 속도로 발달 및 활용되고 있으며, 다양한 분야에서 AI 기법을 도입한 연구가 활발히 진행 중에 있다. 최근 수자원 분야에서는 단기 강우 예측, 댐 유입량 예측 및 하천 수위 예측 등의 분야에서 AI 기술이 접목되어 꾸준한 기술 개발이 이루어지고 있다. 그러나 단변량으로 축척된 자료를 활용하여 중·장기 모형 개발 연구가 다수 진행되고 있지만, 급격한 기후변화 현상과 복잡한 매커니즘을 보이고 있는 기상현상의 경우 단변량 분석으로서는 정확도가 저하 될 수 있는 우려가 있는 것이 현실이다. 이에 본 연구에서는 상기에 제시된 단점을 극복하고자 다양한 기상자료를 검증·예측인자로 활용함과 동시에 Deeplearning 모형과 결합하여 신뢰성 있는 단기 강수 예측이 가능한 모형을 개발하였다. 본 연구에서는 유럽중기예보센터(ECMWF, European Center for Medium-Range Weather Forecasts)에서 제공하고 있는 ERA5 재해석 자료를 활용하였으며, Deeplearning 모형과 결합하여 단기 강우 예측이 가능한 모형을 개발하였다. 1차적으로 격자자료(25km×25km)로 제공되고 있는 ERA5 자료를 상세화(downscaling) 모형에 적용하여 기상청 관측소와 비교·검증하였으며, Deeplearning 모형을 통해 단기 예측이 가능한 모형으로 확장하였다. 이때 Deeplearning의 다양한 모형 중 시계열 분석에 있어 예측 성능이 높은 LSTM 모형을 활용하였으며, 제공되고 있는 대기 변수의 상호관계를 노드간 연결을 통해 결과의 정확도와 신뢰성을 확보하였다. 본 연구 결과는 기관별로 제공하고 있는 예측 수준을 상회하는 결과를 도출하였으며, 홍수기에 집중되는 강우량을 예측하여 대비·대책을 선제적으로 마련할 수 있는 자료로써의 활용성이 높을 것으로 사료된다.
본 연구는 최근 정부가 추진하는 마이데이터 기반 SW·AI 교육 훈련 플랫폼의 체계적 개발 및 활성화를 위한 주요 요소를 탐구하는 것을 목적으로 한다. 이를 위해 가치 기반 수용모델(Value-based Adoption Model, VAM)에 기반한 연구 모형을 설정하고 SW·AI 교육훈련 프로그램에 참여한 경험이 있는 178명을 대상으로 설문조사를 실시한 후, 확인적 요인분석 및 PLS-구조모형 분석을 사용하여 연구 모형을 검증하였다. 주요 연구 결과를 살펴보면 첫째, 투명성과 자기결정권이 지각된 혜택에 유의미한 영향을 미쳤으며, 기술적 노력과 보안성이 지각된 위협에 유의미한 영향을 미치는 것을 확인하였다. 둘째, 지각된 혜택은 플랫폼 사용 의도에 긍정적인 영향을 미쳤으나, 지각된 위협은 유의미한 영향을 미치지 않는 것으로 나타났다. 본 연구는 이러한 결과를 토대로 SW·AI 교육 훈련 분야에서 마이데이터 기반 플랫폼의 체계적 개발 및 활성화를 위한 시사점을 제안하였다.
21세기 인류는 AI 실용 시대를 열어 가고 있다. 이제껏 인류는 산업 구조가 고도화 되어도 지식 생산의 추상화 작업 만큼은 자신의 고유 영역이라 보았는 데 그 믿음에 의구심을 갖게 되었고, 이에 현대인은 인간과 기계 지능을 구분하고 자신의 정체성을 새롭게 구축해야 하는 상황에 놓이게 되었다. 이에 본 논문은 현대 인류의 정체성을 과거로부터 축적한 지식의 결과라는 관점에서 살피고자 하였다. 이러한 논의를 지구와 인류 출현으로부터 시작하는 "단계별 지식 축적 방식의 변화" 라는 역사 모형으로 요약하여 제시하였다. 이 분석 모형의 1 단계는 지구 상에 인간 지능 출현까지의 "DNA 지식 축적" 이다. 2단계는 스스로 지식을 생산할 수 있게 된 인간의 생물학적 지능에 의한 "문명 지식 축적" 과정이다. 현재는 3단계로 분류되며 AI 기술을 이용한 "기계적 지식 축적"단계로 진입하고 있다고 보았다. 본 논문은 인류 역사를 이러한 단계별 지식 축적 모형으로 제안하며 관련한 논의를 기술하였다.
본 연구에서는 Computational Thinking기반의 인공지능교육을 위한 프레임워크와 인지적 학습환경 구성의 절차를 구현하고자 하였으며, 추후 인공지능교육을 위한 교육과정 설계의 이론적 근거를 제시하고자 하였다. 연구의 결과를 토대로 데이터수집 및 발견의 단계에서 추상화 과정을 통해 알고리즘과 문제해결의 모형을 선택하는 학습모형을 제시하였고 이를 자동화하여 평가하는 단계를 기반으로 문제해결 및 예측하는 과정을 수행함으로써 인공지능을 활용한 문제해결력을 기를 수 있는 Computational Thinking 기반 AI의 교수학습모형을 제시하였다. 인공지능교육에 대한 인지적 학습환경과 관련된 연구를 분석하여 Computational Thinking의 핵심 사고과정 중 하나인 추상화의 단계를 중심으로 절차를 구성하였으며, Agency(학습보조)에서 Modeling(인지적 구조화)으로의 전이를 토대로 학습구성의 단계를 제시하였다. 본 연구에서 제시한 인공지능교육의 프레임워크와 인지적 학습환경 구성의 절차는 Computational Thinking을 기반으로 제시되었다는 점에서 특징을 갖고 있으며 추후 인공지능기반 교수학습연구의 근간이 될 것으로 기대한다.
대형언어모형(LLM)을 현실에 적용하려는 지속적인 노력에도 불구하고, 인공지능이 맥락을 이해하고 사람의 의도에 맞게 사회적 지지를 제공하는 능력은 아직 제한적이다. 본 연구에서는 LLM이 사람의 감정 상태를 추론하도록 유도하기 위해, 심리 치료 이론을 기반으로 한 공감 체인(Chain of Empathy, CoE) 프롬프트 방법을 새로 개발했다. CoE 기반 LLM은 인지-행동 치료(CBT), 변증법적 행동 치료(DBT), 인간 중심 치료(PCT) 및 현실 치료(RT)와 같은 다양한 심리 치료 방식을 참고하였으며, 각 방식의 목적에 맞게 내담자의 정신 상태를 해석하도록 설계했다. CoE 기반 추론을 유도하지 않은 조건에서는 LLM이 사회적 지지를 구하는 내담자의 글에 주로 탐색적 공감 표현(예: 개방형 질문)만을 생성했으며, 추론을 유도한 조건에서는 각 심리 치료 모형을 대표하는 정신 상태 추론 방법과 일치하는 다양한 공감 표현을 생성했다. 공감 표현 분류 과제에서 CBT 기반 CoE는 감정적 반응, 탐색, 해석 등을 가장 균형적으로 분류하였으나, DBT 및 PCT 기반 CoE는 감정적 반응 공감 표현을 더 잘 분류하였다. 추가로, 각 프롬프트 조건 별로 생성된 텍스트 데이터를 정성적으로 분석하고 정렬 정확도를 평가하였다. 본 연구의 결과는 감정 및 맥락 이해가 인간-인공지능 의사소통에 미치는 영향에 대한 함의를 제공한다. 특히 인공지능이 안전하고 공감적으로 인간과 소통하는 데 있어 추론 방식이 중요하다는 근거를 제공하며, 이러한 추론 능력을 높이는 데 심리학의 이론이 인공지능의 발전과 활용에 기여할 수 있음을 시사한다.
본 논문에서는 효과적으로 AI 프로젝트 및 신사업을 선정할 수 있는 방법론을 제안했다. AI 기술은 다양한 산업 분야에서 기업의 비즈니스를 고도화하고 산업 전체의 부가가치를 증대시킬 수 있는 기술이다. 기업가정신 연구 분야에서도 AI 기술은 중요한 소재가 되고 있다. 기업들은 AI 기술을 이용해 새로운 비즈니스를 창업하거나 기존 기업 내에서 신사업을 추진하고 혁신을 추진한다. 그러나 기업에서 AI 프로젝트를 선정하고 추진하는 의사결정 과정에서는 다양한 제약사항과 어려움이 존재한다. 본 논문에서는 모폴로지(Morphology)와 AHP 및 TOPSIS 결합 모형을 통한 AI 프로젝트 선정의 새로운 방법론을 제안한다. 제안 방법론은 AI 기술의 기술적 타당성과 현업의 사용자 요구조건을 동시에 고려하여 AI 프로젝트를 선정할 수 있도록 도와준다. 이 연구에서는 HR 분야의 다수 AI 프로젝트를 결정하고자 하는 실제 기업에 제안 방법론을 적용하고 그 결과를 평가했다. 이를 통해 방법론의 현실 적용 가능성을 확인하였으며, 기업의 AI 프로젝트 관련 의사결정에 유용하게 활용하기 위한 방법을 제시했다. 이 연구에서 제안하는 방법론은 사내 기업가정신(Intrapreneurship) 효과를 증진시키는 차원에서, 기업이 고려하는 여러 AI 프로젝트에 대하여 합리적인 방법으로 선정에 대한 의사결정의 프레임워크를 제시한다는 점에서 의미가 크다.
This paper is concerned with analyzing the bankruptcy prediction power of three methods : Multivariate Discriminant Analysis (MDA), Inductive Learning, Neural Network, MDA has been famous for its effectiveness for predicting bankrupcy in accounting fields. However, it requires rigorous statistical assumptions, so that violating one of the assumptions may result in biased outputs. In this respect, we alternatively propose the use of two AI models for bankrupcy prediction-inductive learning and neural network. To compare the performance of those two AI models with that of MDA, we have performed massive experiments with a number of Korean bankrupt-cases. Experimental results show that AI models proposed in this study can yield more robust and generalizing bankrupcy prediction than the conventional MDA can do.
본 연구는 인공지능(AI) 기술을 기반으로 제작된 뉴스 앵커의 시청자 수용에 영향을 미치는 선행 요인 조사를 목적으로 하였다. AI 뉴스 앵커에 대한 지각된 신뢰와 지각된 유용성, 의인화, 사회적 실재감, 그리고 이해도를 포함하는 5개의 선행요인이 사용자 수용에 영향을 미칠 것으로 예상하였다. 그리고 AI 뉴스 앵커로부터 지각하는 능력과 호의, 진실성은 신뢰를 형성하는 선행요인으로 예측하였다. 연구모형과 연구가설을 통계적 유의수준에서 검증하기 위하여 513명의 조사 대상자로부터 설문 데이터를 수집하였다. 데이터의 정규성과 동일방법편의, 내적 일관성 평가와 함께 탐색적 요인분석과 확인적 요인분석을 포함한 척도 순화 프로세스를 수행하였다. 구조방정식 모형 분석을 수행한 결과, AI 뉴스 앵커로부터 지각하는 신뢰와 지각된 유용성, 의인화는 시청자 수용에 유의한 정(+)의 영향을 미치는 것으로 나타났다. 그리고 AI 앵커로부터 지각한 능력과 진실성은 신뢰에 유의한 정(+)의 영향을 미치는 것으로 평가되었다.
오랜 기간과 막대한 비용에도 성공 확률이 낮은 제약·바이오 산업의 생산성 위기를 해결하기 위한 전략으로 전 세계적으로 인공지능과 빅데이터를 활용하려는 사례가 증가하고 있고 가시적인 성과가 나오고 있지만 국내에서는 신약연구에 인공지능 플랫폼 도입에는 관망하는 상황이다. 본 연구는 신약개발을 지원하는 인공지능 플랫폼의 사용과 확산을 촉진하기 위해 도입 및 수용을 견인하는 지각된 가치와 변화에 대한 저항, 수용의도 관계를 검증할 가치기반수용모형과 혁신저항모형 결합 연구모형을 제시하였다. 인공지능 신약개발 플랫폼 사용의도의 연구모형은 지각된 편익으로 유용성, 지식풍부성을, 지각된 희생으로 복잡성, 알고리즘 불투명성을 채택하였고 지각된 가치, 혁신저항의 매개변수로 구성되었다. 실증 결과, 유용성, 지식풍부성, 복잡성, 인공지능 알고리즘의 불투명성이 지각된 가치에 유의미한 영향을 미치고, 유용성, 지식풍부성, 알고리즘의 불투명성, 시험가능성, 인공지능 기술지원환경이 플랫폼 도입에 따른 혁신저항에 유의미한 영향을 미치는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.