• 제목/요약/키워드: AI 모형

검색결과 180건 처리시간 0.022초

Coexistence Direction of AI and Webtoon Artist

  • Bo-Ra Han
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.87-99
    • /
    • 2024
  • 본 연구는 새로이 재편되는 AI 상용 미래 시대에서 웹툰 작가가 창작자로서 직업적 계보를 존속시키기 위해 어떠한 역량이 요구될 것인지를 파악하기 위해 진행되었다. 생성형 AI의 기술 발달이 어떻게 이뤄질지 알아보고, 그 시점에서 창작자의 역할이 어떻게 변화되어 갈 것인지에 대해, 웹툰의 실례로 현재와 미래의 AI 기술력과 웹툰의 활용 현황에 대해 각각 알아보고 미래 변화될 웹툰계의 생태 속에서 요구될 작가의 역할에 대해 전망해 보고자 하였다. 그 결과, 미래 AI는 자립적인 존재로 인간과 협업이 가능한 수준으로 인간 작업자를 대체할 것으로 예측됐으며, 그 한계점 역시 드러나, 물리적 기술 측면에서는 AI가 대체할 수 있으나, 인간 공감형 분야만큼은 존속시킬 수 있음을 알아보았다. 스토리 기획자, 시각 연출가, AI 편집자라는 창의적인 영역이 창작자의 역할 모형으로 도출되었다. 또한, 현시점에서의 모호한 용어 정의로 인한 혼란을 해소하고자 AI 3단계 단계별 모형으로 기계형, 인간형, 초월형으로 보다 현실적으로 분리 제안하였다. 이러한 결과를 통해 연구자는 앞으로 유입될 신진 창작자나 기존의 창작자들의 재 역량 개발을 위한 가이드라인으로 새로운 기술인 AI에 대한 부정 수용보다는 협업을 통한 상생임을 제시하였다.

ERA5 재해석 자료를 활용한 Deep Learning 모델 기반의 단기 예측 모형 개발 (Development of Short-term Forecast Model using ERA5 reanalysis data based on Deep Learning model)

  • 김진영;오랑치맥솜야;육지문;박찬호;박부경;주희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.289-289
    • /
    • 2023
  • 4차산업 혁명이 도래한 이후로 전세계적으로 AI 기술이 유래 없는 속도로 발달 및 활용되고 있으며, 다양한 분야에서 AI 기법을 도입한 연구가 활발히 진행 중에 있다. 최근 수자원 분야에서는 단기 강우 예측, 댐 유입량 예측 및 하천 수위 예측 등의 분야에서 AI 기술이 접목되어 꾸준한 기술 개발이 이루어지고 있다. 그러나 단변량으로 축척된 자료를 활용하여 중·장기 모형 개발 연구가 다수 진행되고 있지만, 급격한 기후변화 현상과 복잡한 매커니즘을 보이고 있는 기상현상의 경우 단변량 분석으로서는 정확도가 저하 될 수 있는 우려가 있는 것이 현실이다. 이에 본 연구에서는 상기에 제시된 단점을 극복하고자 다양한 기상자료를 검증·예측인자로 활용함과 동시에 Deeplearning 모형과 결합하여 신뢰성 있는 단기 강수 예측이 가능한 모형을 개발하였다. 본 연구에서는 유럽중기예보센터(ECMWF, European Center for Medium-Range Weather Forecasts)에서 제공하고 있는 ERA5 재해석 자료를 활용하였으며, Deeplearning 모형과 결합하여 단기 강우 예측이 가능한 모형을 개발하였다. 1차적으로 격자자료(25km×25km)로 제공되고 있는 ERA5 자료를 상세화(downscaling) 모형에 적용하여 기상청 관측소와 비교·검증하였으며, Deeplearning 모형을 통해 단기 예측이 가능한 모형으로 확장하였다. 이때 Deeplearning의 다양한 모형 중 시계열 분석에 있어 예측 성능이 높은 LSTM 모형을 활용하였으며, 제공되고 있는 대기 변수의 상호관계를 노드간 연결을 통해 결과의 정확도와 신뢰성을 확보하였다. 본 연구 결과는 기관별로 제공하고 있는 예측 수준을 상회하는 결과를 도출하였으며, 홍수기에 집중되는 강우량을 예측하여 대비·대책을 선제적으로 마련할 수 있는 자료로써의 활용성이 높을 것으로 사료된다.

  • PDF

Understanding MyData-Based Platform Adoption for SW·AI Education & Training Programs

  • Hansung Kim;Sae Bom Lee;Yunjae Jang
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.269-277
    • /
    • 2024
  • 본 연구는 최근 정부가 추진하는 마이데이터 기반 SW·AI 교육 훈련 플랫폼의 체계적 개발 및 활성화를 위한 주요 요소를 탐구하는 것을 목적으로 한다. 이를 위해 가치 기반 수용모델(Value-based Adoption Model, VAM)에 기반한 연구 모형을 설정하고 SW·AI 교육훈련 프로그램에 참여한 경험이 있는 178명을 대상으로 설문조사를 실시한 후, 확인적 요인분석 및 PLS-구조모형 분석을 사용하여 연구 모형을 검증하였다. 주요 연구 결과를 살펴보면 첫째, 투명성과 자기결정권이 지각된 혜택에 유의미한 영향을 미쳤으며, 기술적 노력과 보안성이 지각된 위협에 유의미한 영향을 미치는 것을 확인하였다. 둘째, 지각된 혜택은 플랫폼 사용 의도에 긍정적인 영향을 미쳤으나, 지각된 위협은 유의미한 영향을 미치지 않는 것으로 나타났다. 본 연구는 이러한 결과를 토대로 SW·AI 교육 훈련 분야에서 마이데이터 기반 플랫폼의 체계적 개발 및 활성화를 위한 시사점을 제안하였다.

지식 축적과 AI 기술을 기반으로 한 인류 역사 모형 (Human History Model Based on Knowledge Accumulation and AI Technology)

  • 권오성
    • 정보교육학회논문지
    • /
    • 제25권5호
    • /
    • pp.665-672
    • /
    • 2021
  • 21세기 인류는 AI 실용 시대를 열어 가고 있다. 이제껏 인류는 산업 구조가 고도화 되어도 지식 생산의 추상화 작업 만큼은 자신의 고유 영역이라 보았는 데 그 믿음에 의구심을 갖게 되었고, 이에 현대인은 인간과 기계 지능을 구분하고 자신의 정체성을 새롭게 구축해야 하는 상황에 놓이게 되었다. 이에 본 논문은 현대 인류의 정체성을 과거로부터 축적한 지식의 결과라는 관점에서 살피고자 하였다. 이러한 논의를 지구와 인류 출현으로부터 시작하는 "단계별 지식 축적 방식의 변화" 라는 역사 모형으로 요약하여 제시하였다. 이 분석 모형의 1 단계는 지구 상에 인간 지능 출현까지의 "DNA 지식 축적" 이다. 2단계는 스스로 지식을 생산할 수 있게 된 인간의 생물학적 지능에 의한 "문명 지식 축적" 과정이다. 현재는 3단계로 분류되며 AI 기술을 이용한 "기계적 지식 축적"단계로 진입하고 있다고 보았다. 본 논문은 인류 역사를 이러한 단계별 지식 축적 모형으로 제안하며 관련한 논의를 기술하였다.

Computational Thinking 기반의 인공지능교육 프레임워크 및 인지적학습환경 설계 (Designing the Instructional Framework and Cognitive Learning Environment for Artificial Intelligence Education through Computational Thinking)

  • 신승기
    • 정보교육학회논문지
    • /
    • 제23권6호
    • /
    • pp.639-653
    • /
    • 2019
  • 본 연구에서는 Computational Thinking기반의 인공지능교육을 위한 프레임워크와 인지적 학습환경 구성의 절차를 구현하고자 하였으며, 추후 인공지능교육을 위한 교육과정 설계의 이론적 근거를 제시하고자 하였다. 연구의 결과를 토대로 데이터수집 및 발견의 단계에서 추상화 과정을 통해 알고리즘과 문제해결의 모형을 선택하는 학습모형을 제시하였고 이를 자동화하여 평가하는 단계를 기반으로 문제해결 및 예측하는 과정을 수행함으로써 인공지능을 활용한 문제해결력을 기를 수 있는 Computational Thinking 기반 AI의 교수학습모형을 제시하였다. 인공지능교육에 대한 인지적 학습환경과 관련된 연구를 분석하여 Computational Thinking의 핵심 사고과정 중 하나인 추상화의 단계를 중심으로 절차를 구성하였으며, Agency(학습보조)에서 Modeling(인지적 구조화)으로의 전이를 토대로 학습구성의 단계를 제시하였다. 본 연구에서 제시한 인공지능교육의 프레임워크와 인지적 학습환경 구성의 절차는 Computational Thinking을 기반으로 제시되었다는 점에서 특징을 갖고 있으며 추후 인공지능기반 교수학습연구의 근간이 될 것으로 기대한다.

인공지능 기반 사회적 지지를 위한 대형언어모형의 공감적 추론 향상: 심리치료 모형을 중심으로 (Enhancing Empathic Reasoning of Large Language Models Based on Psychotherapy Models for AI-assisted Social Support)

  • 이윤경;이인주;신민정;배서연;한소원
    • 인지과학
    • /
    • 제35권1호
    • /
    • pp.23-48
    • /
    • 2024
  • 대형언어모형(LLM)을 현실에 적용하려는 지속적인 노력에도 불구하고, 인공지능이 맥락을 이해하고 사람의 의도에 맞게 사회적 지지를 제공하는 능력은 아직 제한적이다. 본 연구에서는 LLM이 사람의 감정 상태를 추론하도록 유도하기 위해, 심리 치료 이론을 기반으로 한 공감 체인(Chain of Empathy, CoE) 프롬프트 방법을 새로 개발했다. CoE 기반 LLM은 인지-행동 치료(CBT), 변증법적 행동 치료(DBT), 인간 중심 치료(PCT) 및 현실 치료(RT)와 같은 다양한 심리 치료 방식을 참고하였으며, 각 방식의 목적에 맞게 내담자의 정신 상태를 해석하도록 설계했다. CoE 기반 추론을 유도하지 않은 조건에서는 LLM이 사회적 지지를 구하는 내담자의 글에 주로 탐색적 공감 표현(예: 개방형 질문)만을 생성했으며, 추론을 유도한 조건에서는 각 심리 치료 모형을 대표하는 정신 상태 추론 방법과 일치하는 다양한 공감 표현을 생성했다. 공감 표현 분류 과제에서 CBT 기반 CoE는 감정적 반응, 탐색, 해석 등을 가장 균형적으로 분류하였으나, DBT 및 PCT 기반 CoE는 감정적 반응 공감 표현을 더 잘 분류하였다. 추가로, 각 프롬프트 조건 별로 생성된 텍스트 데이터를 정성적으로 분석하고 정렬 정확도를 평가하였다. 본 연구의 결과는 감정 및 맥락 이해가 인간-인공지능 의사소통에 미치는 영향에 대한 함의를 제공한다. 특히 인공지능이 안전하고 공감적으로 인간과 소통하는 데 있어 추론 방식이 중요하다는 근거를 제공하며, 이러한 추론 능력을 높이는 데 심리학의 이론이 인공지능의 발전과 활용에 기여할 수 있음을 시사한다.

기업의 혁신 프로젝트 선정을 위한 모폴로지-AHP-TOPSIS 모형: HR 분야 사례 연구 (A Method for Selecting AI Innovation Projects in the Enterprise: Case Study of HR part)

  • 정두희;이재윤;김태희
    • 벤처창업연구
    • /
    • 제18권5호
    • /
    • pp.159-174
    • /
    • 2023
  • 본 논문에서는 효과적으로 AI 프로젝트 및 신사업을 선정할 수 있는 방법론을 제안했다. AI 기술은 다양한 산업 분야에서 기업의 비즈니스를 고도화하고 산업 전체의 부가가치를 증대시킬 수 있는 기술이다. 기업가정신 연구 분야에서도 AI 기술은 중요한 소재가 되고 있다. 기업들은 AI 기술을 이용해 새로운 비즈니스를 창업하거나 기존 기업 내에서 신사업을 추진하고 혁신을 추진한다. 그러나 기업에서 AI 프로젝트를 선정하고 추진하는 의사결정 과정에서는 다양한 제약사항과 어려움이 존재한다. 본 논문에서는 모폴로지(Morphology)와 AHP 및 TOPSIS 결합 모형을 통한 AI 프로젝트 선정의 새로운 방법론을 제안한다. 제안 방법론은 AI 기술의 기술적 타당성과 현업의 사용자 요구조건을 동시에 고려하여 AI 프로젝트를 선정할 수 있도록 도와준다. 이 연구에서는 HR 분야의 다수 AI 프로젝트를 결정하고자 하는 실제 기업에 제안 방법론을 적용하고 그 결과를 평가했다. 이를 통해 방법론의 현실 적용 가능성을 확인하였으며, 기업의 AI 프로젝트 관련 의사결정에 유용하게 활용하기 위한 방법을 제시했다. 이 연구에서 제안하는 방법론은 사내 기업가정신(Intrapreneurship) 효과를 증진시키는 차원에서, 기업이 고려하는 여러 AI 프로젝트에 대하여 합리적인 방법으로 선정에 대한 의사결정의 프레임워크를 제시한다는 점에서 의미가 크다.

  • PDF

기업도산예측을 위한 통계적모형과 인공지능 모형간의 예측력 비교에 관한 연구 : MDA,귀납적 학습방법, 인공신경망 (A Comparative Study on the Bankruptcy Prediction Power of Statistical Model and AI Models: MDA, Inductive,Neural Network)

  • 이건창
    • 한국경영과학회지
    • /
    • 제18권2호
    • /
    • pp.57-81
    • /
    • 1993
  • This paper is concerned with analyzing the bankruptcy prediction power of three methods : Multivariate Discriminant Analysis (MDA), Inductive Learning, Neural Network, MDA has been famous for its effectiveness for predicting bankrupcy in accounting fields. However, it requires rigorous statistical assumptions, so that violating one of the assumptions may result in biased outputs. In this respect, we alternatively propose the use of two AI models for bankrupcy prediction-inductive learning and neural network. To compare the performance of those two AI models with that of MDA, we have performed massive experiments with a number of Korean bankrupt-cases. Experimental results show that AI models proposed in this study can yield more robust and generalizing bankrupcy prediction than the conventional MDA can do.

  • PDF

인공지능(AI) 기술 기반의 뉴스 앵커에 대한 수용 의도의 선행요인 연구 (An Evaluation of Determinants to Viewer Acceptance of Artificial Intelligence-based News Anchor)

  • 신하얀;권상희
    • 한국콘텐츠학회논문지
    • /
    • 제21권4호
    • /
    • pp.205-219
    • /
    • 2021
  • 본 연구는 인공지능(AI) 기술을 기반으로 제작된 뉴스 앵커의 시청자 수용에 영향을 미치는 선행 요인 조사를 목적으로 하였다. AI 뉴스 앵커에 대한 지각된 신뢰와 지각된 유용성, 의인화, 사회적 실재감, 그리고 이해도를 포함하는 5개의 선행요인이 사용자 수용에 영향을 미칠 것으로 예상하였다. 그리고 AI 뉴스 앵커로부터 지각하는 능력과 호의, 진실성은 신뢰를 형성하는 선행요인으로 예측하였다. 연구모형과 연구가설을 통계적 유의수준에서 검증하기 위하여 513명의 조사 대상자로부터 설문 데이터를 수집하였다. 데이터의 정규성과 동일방법편의, 내적 일관성 평가와 함께 탐색적 요인분석과 확인적 요인분석을 포함한 척도 순화 프로세스를 수행하였다. 구조방정식 모형 분석을 수행한 결과, AI 뉴스 앵커로부터 지각하는 신뢰와 지각된 유용성, 의인화는 시청자 수용에 유의한 정(+)의 영향을 미치는 것으로 나타났다. 그리고 AI 앵커로부터 지각한 능력과 진실성은 신뢰에 유의한 정(+)의 영향을 미치는 것으로 평가되었다.

인공지능(AI) 플랫폼의 지각된 가치 및 혁신저항 요인이 수용의도에 미치는 영향: 신약 연구 분야를 중심으로 (A Study on The Effect of Perceived Value and Innovation Resistance Factors on Adoption Intention of Artificial Intelligence Platform: Focused on Drug Discovery Fields)

  • 김영대;김지영;정원경;신용태
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권12호
    • /
    • pp.329-342
    • /
    • 2021
  • 오랜 기간과 막대한 비용에도 성공 확률이 낮은 제약·바이오 산업의 생산성 위기를 해결하기 위한 전략으로 전 세계적으로 인공지능과 빅데이터를 활용하려는 사례가 증가하고 있고 가시적인 성과가 나오고 있지만 국내에서는 신약연구에 인공지능 플랫폼 도입에는 관망하는 상황이다. 본 연구는 신약개발을 지원하는 인공지능 플랫폼의 사용과 확산을 촉진하기 위해 도입 및 수용을 견인하는 지각된 가치와 변화에 대한 저항, 수용의도 관계를 검증할 가치기반수용모형과 혁신저항모형 결합 연구모형을 제시하였다. 인공지능 신약개발 플랫폼 사용의도의 연구모형은 지각된 편익으로 유용성, 지식풍부성을, 지각된 희생으로 복잡성, 알고리즘 불투명성을 채택하였고 지각된 가치, 혁신저항의 매개변수로 구성되었다. 실증 결과, 유용성, 지식풍부성, 복잡성, 인공지능 알고리즘의 불투명성이 지각된 가치에 유의미한 영향을 미치고, 유용성, 지식풍부성, 알고리즘의 불투명성, 시험가능성, 인공지능 기술지원환경이 플랫폼 도입에 따른 혁신저항에 유의미한 영향을 미치는 것으로 나타났다.