• 제목/요약/키워드: AI 기법

검색결과 586건 처리시간 0.022초

딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출 (Deriving adoption strategies of deep learning open source framework through case studies)

  • 최은주;이준영;한인구
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.27-65
    • /
    • 2020
  • 많은 정보통신기술 기업들은 자체적으로 개발한 인공지능 기술을 오픈소스로 공개하였다. 예를 들어, 구글의 TensorFlow, 페이스북의 PyTorch, 마이크로소프트의 CNTK 등 여러 기업들은 자신들의 인공지능 기술들을 공개하고 있다. 이처럼 대중에게 딥러닝 오픈소스 소프트웨어를 공개함으로써 개발자 커뮤니티와의 관계와 인공지능 생태계를 강화하고, 사용자들의 실험, 적용, 개선을 얻을 수 있다. 이에 따라 머신러닝 분야는 급속히 성장하고 있고, 개발자들 또한 여러가지 학습 알고리즘을 재생산하여 각 영역에 활용하고 있다. 하지만 오픈소스 소프트웨어에 대한 다양한 분석들이 이루어진 데 반해, 실제 산업현장에서 딥러닝 오픈소스 소프트웨어를 개발하거나 활용하는데 유용한 연구 결과는 미흡한 실정이다. 따라서 본 연구에서는 딥러닝 프레임워크 사례연구를 통해 해당 프레임워크의 도입 전략을 도출하고자 한다. 기술-조직-환경 프레임워크를 기반으로 기존의 오픈 소스 소프트웨어 도입과 관련된 연구들을 리뷰하고, 이를 바탕으로 두 기업의 성공 사례와 한 기업의 실패 사례를 포함한 총 3 가지 기업의 도입 사례 분석을 통해 딥러닝 프레임워크 도입을 위한 중요한 5가지 성공 요인을 도출하였다: 팀 내 개발자의 지식과 전문성, 하드웨어(GPU) 환경, 데이터 전사 협력 체계, 딥러닝 프레임워크 플랫폼, 딥러닝 프레임워크 도구 서비스. 그리고 도출한 성공 요인을 실현하기 위한 딥러닝 프레임워크의 단계적 도입 전략을 제안하였다: 프로젝트 문제 정의, 딥러닝 방법론이 적합한 기법인지 확인, 딥러닝 프레임워크가 적합한 도구인지 확인, 기업의 딥러닝 프레임워크 사용, 기업의 딥러닝 프레임워크 확산. 본 연구를 통해 각 산업과 사업의 니즈에 따라, 딥러닝 프레임워크를 개발하거나 활용하고자 하는 기업에게 전략적인 시사점을 제공할 수 있을 것이라 기대된다.

작업 준비비용 최소화를 고려한 강화학습 기반의 실시간 일정계획 수립기법 (Real-Time Scheduling Scheme based on Reinforcement Learning Considering Minimizing Setup Cost)

  • 유우식;김성재;김관호
    • 한국전자거래학회지
    • /
    • 제25권2호
    • /
    • pp.15-27
    • /
    • 2020
  • 본 연구는 일정계획을 위한 간트 차트(Gantt Chart) 생성과정을 세로로 세우면 일자형만 존재하는 테트리스(Tetris) 게임과 유사하다는 아이디어에서 출발하였다. 테트리스 게임에서 X축은 M개의 설비(Machine)들이 되고 Y축은 시간이 된다. 모든 설비에서 모든 종류(Type)의 주문은 분리 없이 작업 가능하나 작업물 종류가 다를 경우에는 시간지체 없이 작업 준비비용(SetupCost)이 발생한다는 가정이다. 본 연구에서는 앞에서 설명한 게임을 간트리스(Gantris)라 명명하고 게임환경을 구현 하였으며, 심층 강화학습을 통해서 학습한 인공지능이 실시간 스케줄링한 일정계획과 인간이 실시간으로 게임을 통해 수립한 일정계획을 비교하였다. 비교연구에서 학습환경은 단일 주문목록 학습환경과 임의 주문목록 학습환경에서 학습하였다. 본 연구에서 수행한 비교대상 시스템은 두 가지로 4개의 머신(Machine)-2개의 주문 종류(Type)가 있는 시스템(4M2T)과 10개의 머신-6개의 주문종류가 있는 시스템(10M6T)이다. 생성된 일정계획의 성능지표로는 100개의 주문을 처리하는데 발생하는 Setup Cost, 총 소요 생산시간(makespan)과 유휴가공시간(idle time)의 가중합이 활용되었다. 비교연구 결과 4M2T 시스템에서는 학습환경에 관계없이 학습된 시스템이 실험자보다 성능지표가 우수한 일정계획을 생성하였다. 10M6T 시스템의 경우 제안한 시스템이 단일 학습환경에서는 실험자보다 우수한 성능 지표의 일정계획을 생성하였으나 임의 학습환경에서는 실험자보다 부진한 성능지표를 보였다. 그러나 job Change 횟수 비교에서는 학습시스템이 4M2T, 10M6T 모두 사람보다 적은 결과를 나타내어 우수한 스케줄링 성능을 보였다.

첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계 (Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design)

  • 허성구;정찬혁;이나희;심예림;우태용;김정인;유창규
    • 청정기술
    • /
    • 제28권1호
    • /
    • pp.79-93
    • /
    • 2022
  • 본 연구에서는 Part I에서 제안한 첨단 전자산업 폐수처리시설 특화 Water Digital Twin모델인 e-ASM을 이용하여 랩-파일럿 처리장 데이터를 바탕으로 모델 보정(Calibration), 유입 성상에 따른 제거 효율, 유출수 예측 및 최적 공법 선정을 수행하였다. 첨단 전자산업 폐수처리시설의 특화 모델링을 위하여, 민감도 분석을 통해 e-ASM 모델의 정합성과 상관성이 높은 동역학적 파라미터를 선정하였고, 다중반응표면분석법 (Multiple response surface methodology, MRS)을 이용하여 동역학적 파라미터를 보정하였다. e-ASM 모델의 보정 결과, Lab-scale, Pilot-scale 단위의 실험데이터와 90% 이상의 높은 정합성을 보였다. 그리고 4가지 유기폐수 처리처리공법인 MLE, A2/O, 4-stage MLE-MBR, Bardenpho-MBR을 제안한 Water Digital Twin으로 구현하여 유입 폐수의 성상별 운전조건에 따라 제거효율을 분석하였으며, Bardenpho-MBR이 C/N ratio 변화에서도 안정적으로 COD (Chemical oxygen demand)를 90% 이상 제거하며 높은 총 질소 제거 효율을 보였다. 그리고 유입 폐수의 조건별 Bardenpho-MBR공정의 수리학적 체류시간(Hydraulic retention time, HRT)이 3일 이상일 때 1,800 mg L-1의 고농도 TMAH 폐수를 98% 이상 제거할 수 있음을 확인할 수 있었다. 이와 같이, 본 연구에서 개발한 e-ASM은 전자산업 제조시설별, 유입 폐수의 성상별 특화 모델링을 통해 높은 정합성을 가진 전자산업 폐수처리공정의 Water Digital Twin를 구현할 수 있고, 최적운전, Water AI, 최적가용기법 선정 등의 응용 가능성을 바탕으로 지속 가능한 첨단전자 산업을 위해 활용될 수 있을 것으로 사료된다.

1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발 (Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models)

  • 이준학;이하늘;강나래;황석환;김형수;김수전
    • 한국수자원학회논문집
    • /
    • 제56권5호
    • /
    • pp.311-323
    • /
    • 2023
  • 집중호우, 홍수 및 도시침수와 같은 재해를 저감시키기 위하여 자연 재난으로 인한 재해의 발생 여부를 사전에 파악하는 것은 중요하다. 현재 국내는 기상청에서 운영하고 있는 호우주의보 및 호우경보를 발령하고 있지만, 이는 전국에 일괄적인 기준으로 적용하고 있어 사전에 호우로 인한 피해를 명확하게 인지하지 못하고 있는 실정이다. 따라서, 일괄된 기준을 지역적 특성을 반영한 호우특보 기준으로 재설정하고 1시간 후에 강우로 발생할 수 있는 피해의 규모를 예측하고자 하였다. 연구 대상 지역으로는 호우피해가 가장 빈번하게 발생하였던 경기도 지역으로 선정하였고, 강우량 및 호우 피해액 자료를 활용하여 지역적 특성을 고려한 시간단위 재해 유발 강우를 설정하였다. 강우에 의한 호우피해 발생 여부를 예측하는 모형을 개발하기 위해 재해 유발 강우 및 강우 자료를 활용하였으며, 머신러닝 기법인 의사 결정 나무 모형과 랜덤 포레스트 모형을 활용하여 분석 및 비교하였다. 또한 1시간 후의 강우를 예측하기 위한 모형으로는 장단기 메모리, 심층 신경망 모형을 활용하여 분석 및 비교하였다. 최종적으로 예측 모형을 통해 예측된 강우를 훈련된 분류 모형에 적용하여 1시간 후 호우에 의한 규모별 피해 발생 여부를 예측하였고, 이를 1ST-모형이라고 정의하였다. 본 연구를 통해 개발된 1ST-모형을 활용하여 예방 및 대비 차원의 재난관리를 실시한다면 호우로 인한 피해를 저감하는데 기여 할 수 있을 것으로 판단된다.

PET/CT 검사 시 움직임 보정 기법의 유용성 평가 (The Correction Effect of Motion Artifacts in PET/CT Image using System)

  • 조영학;유세종;배석환;선종률;김성호;이원정
    • 한국방사선학회논문지
    • /
    • 제18권1호
    • /
    • pp.45-52
    • /
    • 2024
  • 본 연구에서는 의료기관에서 방사성동위원소를 이용하여 암을 비롯한 여러 질환을 검사하는 PET/CT 검사에서 환자의 움직임으로 인한 영상의 질 저하와 판독 오류를 발생할 수 있는 점을 보완하기 위해 AI 기반의 Algorithm을 이용하여 개발한 Mothion Free 소프트웨어를 이용하여 호흡으로 인한 움직임의 보정 정도를 확인하고 유용성을 평가하여 임상에서의 적용을 위한 연구를 하였다. 실험 방법은 RPM Phantom을 사용하여 방사성동위원소 18F-FDG를 진공 바이알과 서로 다른 크기 NEMA IEC body Phantom의 sphere에 방사성동위원소를 주입하고 이것의 움직임을 호흡 시 움직이는 병소로 연출하여 영상을 획득하였다. 진공 바이알은 서로 다른 위치에서 움직임 정도를 다르게 하였고, 서로 다른 크기 NEMA IEC body Phantom의 sphere는 서로 다른 병소의 크기를 연출 하였다. 획득한 영상을 통하여 병소의 체적, 최대 SUV, 평균 SUV를 각각 측정하여 Mothion Free가 움직임 보정 정도를 정량적 평가를 하였다. 움직임 정도를 크게 설정한 진공바이알 A의 평균 SUV는 23.36 %, 움직임 정도를 작게 설정한 진공 바이알 B는 29.3 % 오차율이 감소하였다. NEMA IEC body Phantom의 sphere 37 mm, 22 mm에서의 평균 SUV는 각각 29.3 %, 26.51 % 오차율이 감소하였다. 오차율을 산출한 네 가지 측정치의 평균 오차율 30.03 % 감소하여 보다 정확한 평균 SUV 값을 나타내었다. 이 연구에서는 2차원적인 움직임 만을 연출할 수 있었기에 보다 정확한 데이터를 얻기 위해서는 실제 인체의 호흡 운동을 구현할 수 있는 Phantom을 이용하고, 움직임의 범위의 다양성을 구성한다면 보다 정확한 유용성 평가를 할 수 있다고 연구된다.

딥러닝을 활용한 고대 수막새 이미지 분류 검토 (Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images)

  • 김영현
    • 헤리티지:역사와 과학
    • /
    • 제57권3호
    • /
    • pp.24-35
    • /
    • 2024
  • 최근 의료, 제조, 자율주행, 보안 등 다양한 분야에서 인공지능과 컨볼루션 신경망 등 딥러닝 기술을 활용한 연구들이 활발하게 진행되고 있으며, 사회 전반에 적지 않은 영향을 미치고 있다. 본 연구 또한 이러한 흐름에 맞춰서 고고학 유물 분류에 딥러닝을 활용해 보았다. 즉, 연구는 고고학 조사를 통해 출토된 고대 수막새의 이미지 분류에 딥러닝 기술을 적용하는 초보적 시도로서, 고구려, 백제, 신라 시대의 수막새 이미지를 CNN 모델로 학습시켜 분류를 진행하였다. 고구려, 백제, 신라 수막새 이미지 각각 100장씩 총 300장을 기반으로 기본 데이터셋을 형성하였고, 데이터 증강 기법을 활용하여 4배를 증가시킴으로써 총 1,200장을 데이터셋으로 구축하였다. 사전 훈련된 EfficientNetB0 모델의 전이학습을 통하여 모델을 구축한 후, 5겹 교차검증을 실시한 결과 평균 학습 정확도 98.06%, 검증 정확도 97.08%를 기록하였다. 또한 학습된 모델을 240장의 테스트 데이터셋으로 성능을 평가한 결과, 최소 91% 이상의 높은 정확도로 삼국의 수막새 이미지를 시대별로 구분할 수 있음을 확인하였다. 특히 학습률 0.0001에서 정확도 92.92%, 정밀도 92.96%, 재현율 92.92%, F1 점수 92.93%로 가장 우수한 성능을 보였는데, 이는 다양한 학습률 설정을 통하여 과적합과 과소적합 문제를 방지함과 동시에 최적의 매개변수를 찾는 과정에서 이루어졌다. 본 연구의 결과는 한국 고고학 자료의 분류에 딥러닝 기술 활용 가능성을 확인했다는 점에서 의의가 있다고 생각된다. 또한 기존에 축적·제작된 ImageNet 데이터셋 및 파라미터가 고고 자료 분석에도 긍정적으로 적용할 수 있음을 확인하였다. 이러한 접근은 향후 고고학 데이터베이스 축적이나 활용, 박물관의 유물 분류 및 정리 등 다양한 방식의 모델을 창출할 수 있을 것이다.

M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발 (Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms)

  • 양훈석;김선웅;최흥식
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.63-83
    • /
    • 2019
  • 투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.

온톨로지 기반의 보일러 셧다운 절차 생성 : 지식표현 및 훈련시나리오 활용 (An Ontology-based Generation of Operating Procedures for Boiler Shutdown : Knowledge Representation and Application to Operator Training)

  • 박명남;김태옥;이봉우;신동일
    • 한국가스학회지
    • /
    • 제21권4호
    • /
    • pp.47-61
    • /
    • 2017
  • 대규모 플랜트에서 조업자 안전훈련 모델의 전제조건은 조업에 관련된 다양한 위험의 상세분석 및 지식표현으로 얻어진 운영절차의 범용성과 정확성이다. 본 연구에서는 조업절차의 생성을 위해 인공지능 플래닝 기법을 고려하여 조업자의 일반행위와 조치행위 그리고 기술용어 등을 분류하고, 지식의 공유 및 재사용을 고려하여 플랜트의 운영과정과 관련된 조업행위 및 용어의 확장을 지식표현 온톨로지 형태로 정의하였다. 또한 조업의 일반적인 행위의 구체화를 위해 Hierarchical Task Network (HTN)기반의 행위계획을 적용하여 목표와 실행이 가능한 수준까지 분할하여 여러 상황에 따른 절차를 생성하도록 설계하였다. 이후 실제 보일러 설비의 사례연구를 통해 조업조건과 운전상태 그리고 장치들 간의 운전목적에 따라 구성설비의 역할을 분류하고, 비상정지절차를 생성하였으며, 제안한 방법의 실제 플랜트 적용 가능성을 확인하였다. 체계적인 지식표현에 기초한 지식베이스 구축은 일반적인 플랜트 운영절차 및 조업자 안전훈련 시나리오의 생성에도 활용이 가능할 것이며, 향후 자동생성 등에도 활용될 수 있을 것으로 판단된다.

조선 왕릉의 경관관리를 위한 통합적 시각구조분석모델 모색방안 (A Study on the Invention of Synthetic Visual Analysis Model for Joseon Royal Tombs)

  • 홍윤순;이애란;백종철
    • 한국전통조경학회지
    • /
    • 제33권2호
    • /
    • pp.49-57
    • /
    • 2015
  • 본 연구는 조선 왕릉의 명확한 공간 및 시각구조특성을 활용하여 그 주변 경관관리를 위해 요청되는 시각구조분석의 최적화 모델개발을 모색한 것으로, 이를 최근의 분석 장비와 기법으로 뒷받침하고자 하였다. 연구 결과 삼차원적 정보모델링인 '스케치업'의 간략화한 자료구축을 통해 이 자료상에서 주요지점과 통경축, 그리고 주변의 저해요소 등을 복합적으로 고려한 연속적 시뮬레이션 기반구축의 선행 실시를 상정하였다. 이후 이들의 경로와 시선방향을 연장하는 좌표 값을 도출하고 이 구간을 헬리캠이 운행하면서 촬영한 실사이미지와 시뮬레이션을 상호 비교함으로서 경관분석과 관리의 효율성이 배가될 수 있음을 제안하였다. 이러한 내용은 그간 소수의 국한된 장소에서 촬영된 이미지를 통해 분석되어온 고정적 지각구조 분석방식의 한계성을 극복할 수 있으며, 시선차단요소들과의 관계성 고찰이 용이한 장점을 보유한다. 아울러 제안된 방식은 주요 시선경로 상의 경관적 변화양상을 포착할 수 있으며, 헬리캠을 이용한 실사 이미지와 스케치업의 가상 이미지 간 호환을 통해 최적화된 장비운영을 가능케 함으로서 분석이후 시간적 변화에 따른 정비계획의 시뮬레이션 자료로서도 용이하게 전환될 수 있다. 상기의 제안은 그간의 조망점, 통경축, 경관관리권역이라는 점, 선, 면, 입체적 환경을 중층적, 연속적, 효율적으로 연계하는 자료로서 기능할 수 있을 것으로 판단된다. 본 연구는 조선왕릉과 주변 경관구조 분석방법론 수립에 치중한 까닭에 실천적 점검이 결여된 상태이나 향후 현장에서의 실천과 점검을 통해 기타 문화재의 경관관리에도 응용될 것을 기대한다.

영상 폐색영역 검출 및 해결을 위한 딥러닝 알고리즘 적용 가능성 연구 (A Study on the Applicability of Deep Learning Algorithm for Detection and Resolving of Occlusion Area)

  • 배경호;박홍기
    • 한국산학기술학회논문지
    • /
    • 제20권11호
    • /
    • pp.305-313
    • /
    • 2019
  • 최근 드론을 이용한 공간정보 구축이 활성화되면서 공간정보 산업발전에 많은 기여를 하고 있다. 하지만 드론 공간정보는 카메라의 중심투영에 의한 발생하는 폐색영역 뿐 아니라 가로수, 보행자, 현수막과 같은 적치물에 의한 폐색 영역이 필연적으로 발생한다. 이러한 폐색영역을 효율적으로 해결하기 위한 다양한 방안이 연구되고 있다. 본 연구에서는 폐색영역 해결을 위해 원초적인 재촬영이 아닌 딥러닝 알고리즘을 적용하기 위한 다양한 알고리즘별 조사 및 비교 연구를 수행하였다. 그 결과, 객체 검출 알고리즘인 HOG부터 기계학습 방법인 SVM, 딥러닝 방식인 DNN, CNN, RNN까지 다양한 모델들이 개발 및 적용되고 있으며, 이 중 영상의 분류, 검출에 가장 보편적이고 효율적인 알고리즘은 CNN 기법임을 확인하였다. 향후 AI 기반의 자동 객체 탐지와 분류는 공간정보 분야에서 각광받는 최신 과학기술이다. 이를 위해 다양한 알고리즘에 대한 검토와 적용은 중요하다. 따라서, 본 연구에서 제시하는 알고리즘별 적용 가능성은 자동으로 드론 영상의 폐색영역을 탐지하고 해결할 수 있어 공간정보 구축의 시간, 비용, 인력에 대한 효율성 향상에 기여할 것으로 판단된다.