• 제목/요약/키워드: AI 기법

검색결과 586건 처리시간 0.033초

주식 거래의 필수 개념, 도구, 기법 및 방법에 관한 연구: 거래자와 투자자를 위한 안내서 (A Study on Essential Concepts, Tools, Techniques and Methods of Stock Market Trading: A Guide to Traders and Investors)

  • Sukhendu Mohan Patnaik;Debahuti Mishra
    • 산업과 과학
    • /
    • 제2권1호
    • /
    • pp.21-38
    • /
    • 2023
  • 본 논문에서는 주식 시장의 기술적 분석의 기본에 대해 제시하였다. 소매 투자자나 거래자는 다양한 정보원으로부터 나오는 외부 정보를 얻을 수 있는 수단이 제한적이다. 일반적으로 기술적 분석에는 캔들 차트가 주로 활용된다. 인도의 대부분의 브로커는 차트 솔루션도 제공하고 있다. 보안이나 원자재 또는 Forex의 가격 변동을 분석해 보면 일반적인 주가 변동 패턴을 예측 할 수 있다. 주가는 특정 수준에서 반영되며 지지 및 저항 수준으로 널리 알려져 있다. 유가 증권의 가격에 발생하는 모든 일이 과거 언젠가 이미 진행된 패턴 또는 주기의 일부로 간주되기 때문에 이러한 연구는 영리한 애널리스트가 특정 확률로 가격의 미래 변동을 예측하는 데 도움을 줄 수 있다. 캔들스틱의 패턴, 가격 변동, 거래량 및 지표에 대한 연구는 가능한 목표 및 손절매로 높은 확률의 거래를 할 수 있는 기회를 제공한다. 본 연구 결과를 활용하여 트레이더나 투자자는 확률이 높은 거래나 조건을 취하고 투자 손실을 통제할 수 있게 된다.

적응적 배터리 팩 피막 저항 변화 감지를 통한 배터리 스웰링 감지 기법 (Battery swelling detection system based on adaptive resistance change on battery pack surface)

  • 박성현;성기범;박재현;신동화
    • 전기전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.85-92
    • /
    • 2023
  • 최근 4차 산업혁명 시대가 다가오면서 휴대성을 강조한 IoT 기기가 늘고 있다. 동시에 배터리 사용량도 급증하고 있다. 배터리 사용량이 증가하면서 배터리 안전과 관련된 이슈는 피할 수 없는 문제가 되었고, 많은 연구가 이뤄졌다. 본 논문은 다양한 배터리 문제 중 팽창으로 인한 폭발 문제를 다루고 있으며, 저항 변화를 파악하여 배터리 팽창을 감지하는 시스템의 연구 및 개발을 포함하고 있다. 이번 연구의 핵심기술은 배터리가 팽창할 때 발생하는 부피 변화를 배터리에 그려진 전선의 저항 변화를 이용해 배터리 폭발을 방지하는 시스템을 개발하는 것이다. 또한 패턴분석을 통해 어떤 형태로 전선을 구성하여야 저항 변화가 많이 일어나는지 분석하였다.

블러링기법 기반의 홍채영역 마스킹 방법 (Iris Region Masking based on Blurring Technique)

  • 이기성;김수형
    • 스마트미디어저널
    • /
    • 제11권2호
    • /
    • pp.25-30
    • /
    • 2022
  • 최근 스마트폰 또는 사진기, 화상캠 등의 기기 성능이 발달하면서 영상이나 사진에서 사람의 생체정보를 얻는 일이 가능하게 되었다. 실제 독일의 한 해커단체는 고화질의 사진으로부터 사람의 홍채 정보를 획득하여 스마트폰의 홍채 스캐너를 해킹하는 모습을 공개하기도 하였다. 이처럼 고도화된 기기로 화질 좋은 영상이나 사진을 얻을 수 있게 되면서 그에 맞는 보안시스템의 필요성도 대두되고 있다. 따라서 본 논문에서는 openCV의 Haar Cascades와 Blur 모델을 활용하여 영상이나 사진에서 사람의 홍채 정보를 자동으로 마스킹하는 방법을 제안한다. 위 방법은 사람의 얼굴은 인식한 뒤 얼굴 범위 안에서 눈을 검출하여 자동으로 홍채 정보를 마스킹하는 기술이다. 이 기술이 스마트폰, zoom 등의 기기 및 애플리케이션에서 사용된다면 사용자에게 더 보안성이 뛰어난 서비스를 제공할 수 있을 것으로 기대된다.

초등학교 저학년 학습자를 위한 인공지능 교육프로그램 개발 (Development of Artificial Inetelligence Education Program for the Lower Grades of Elementary School)

  • 강지은;구덕회
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.123-129
    • /
    • 2021
  • 최근 인공지능 교육을 위한 다양한 플랫폼과 컨텐츠가 개발되고 있지만, 초등 저학년 학습자를 위한 인공지능 교육 프로그램은 미비한 상황이다. 이에 본 연구는 초등학교 저학년 학습자를 위한 인공지능 교육 프로그램을 개발하는 것을 목적으로 한다. 이를 위해 노벨 엔지니어링 기법을 활용하여 교육 프로그램을 설계하였고 전문가 타당도 검사로 타당도를 검증하였다. 그 결과 한글 해득 과정 중인 저학년 학습자 수준을 고려하여 문자 언어보다는 음성 언어를 기반으로 한 프로그램을 구성하고, 교과 간 통합으로 교육 시수를 확보할 필요가 있었다. 이를 반영하여 정보 교과가 별도로 신설되어 있지 않은 초등 저학년의 교육과정을 고려하여 국어, 수학, 통합 교과와 융합하여 인공지능 교육 프로그램을 설계하였다. 노벨 엔지니어링은 그동안 소프트웨어 교육을 위한 다양한 융합교육 연구사례가 있었고 그 효과가 검증되었다. 학습의 풍부한 맥락을 제공하여 주는 노벨 엔지니어링을 통해 초등 저학년을 위한 인공지능교육의 새로운 방향성을 제시할 수 있을 것으로 기대한다.

  • PDF

의사결정 방법론 기반 4차 산업혁명 시대 에너지 선호도 분석 (Analysis of Energy Preference in the 4th Industrial Revolution Based on Decision Making Methodology)

  • 남수태;신성윤;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.328-329
    • /
    • 2021
  • 최근 제4차 산업혁명은 21세기 초부터 정보통신기술 융합기반의 초지능, 초연결 산업혁명으로 디지털 기술과 물리적, 생물학적 기술 사이의 경계가 사라지면서 융합되어 나타나는 기술혁신으로 정의되다. 디지털 기술 분야에서는 인공지능, 사물인터넷 그리고 블록체인 기술을 포함하고 있다. 물리학 기술 분야에는 로봇공학, 무인운송수단과 3D 프린팅 기술을 언급하였다. 생물학 기술 분야에서는 생명공학 및 나노기술을 두각을 나타낼 것이라고 말했다. 2016년 1월 스위스 다보스에서 개최된 세계경제포럼에서 회장인 슈밥(Klaus Schwab) 교수가 처음으로 제4차 산업혁명을 제안하였다. AHP(analytic hierarchy process) 분석기법을 적용하기 위해 1단계 요인으로 자원, 물, 지구 그리고 원자로 구분하였다. 또한 2단계 요인으로는 개념모델에서 제시된 9개 세부 에너지로 조직하였다. 따라서 분석결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하고자 한다.

  • PDF

멀티 파티 시스템에서 딥러닝을 위한 프라이버시 보존 기술 (Privacy Preserving Techniques for Deep Learning in Multi-Party System)

  • 고혜경
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.647-654
    • /
    • 2023
  • 딥러닝은 이미지, 텍스트와 같이 복잡한 데이터를 분류 및 인식하는데 유용한 방법으로 딥러닝 기법의 정확도는 딥러닝이 인터넷상의 AI 기반의 서비스를 유용하게 하는데 기초가 되었다. 그러나 딥러닝에서 훈련에 사용되는 방대한 양의 사용자 데이터는 사생활 침해 문제를 야기하였고 사진이나 보이스와 같이 사용자이 개인적이고 민감한 데이터를 수집한 기업들이 데이터들을 무기한으로 소유한다. 사용자들은 자신의 데이터를 삭제할 수 없고 사용되는 목적도 제한할 수 없다. 예를 들면, 환자 진료기록에 대한 딥러닝 기술을 적용하기 원하는 의료기관들과 같은 데이터소유자들은 사생활과 기밀유지 문제로 환자의 데이터를 공유할 수 없고 딥러닝 기술의 혜택을 받기 어렵다. 우리는 멀티 파티 시스템에서 다수의 작업자들이 입력 데이터집합을 공유하지 않고 신경망 모델을 공동으로 사용할 수 있는 프라이버시 보존 기술을 적용한 딥러닝 방법을 설계한다. 변형된 확률적 경사 하강에 기초한 최적화 알고리즘을 이용하여 하위 집합을 선택적으로 공유할 수 있는 방법을 이용하였고 결과적으로 개인정보를 보호하면서 학습 정확도를 증가시킨 학습을 할 수 있도록 하였다.

금강 유역에 대한 SURR 모형의 적용성 평가 (Applicability of SURR Model for Geum-River Basin)

  • 임예진;허재영;응옥 티엔 즈엉;배덕효
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.361-361
    • /
    • 2022
  • 최근 기후변화의 영향으로 국지성 집중호우에 의한 홍수 피해가 빈번히 발생하고 있으며, 이로 인한 인명 및 재산 피해가 증가하고 있다. 2020년의 경우, 최장 기간 장마로 인해 금강유역을 비롯한 전국에서 산사태, 제방 붕괴, 침수 등 많은 피해가 발생하였다. 이러한 홍수피해 저감을 위해서는 신뢰도 높은 홍수량 예측이 요구된다. 특히, 토양수분과 같이 시간에 따른 유역 수문 정보를 모의 과정에서 고려하는 것이 매우 중요하다. 아울러, 유역 전반에 대한 토양수분 정보는 실시간으로 획득하는 것이 어려워 이를 고려할 수 있는 강우-유출모형을 활용하는 것이 바람직하다. 이러한 수문모형으로 SURR(Sejong University Rainfall Runoff) 모형이 있으며 다양한 적용 및 평가를 통해 모형 활용성에 대한 증진이 요구되는 실정이다. 본 연구에서는 저류함수 기반의 시단위 연속형 강우-유출모형(SURR 모형)을 활용한 강우-유출 모의를 수행하여 홍수 피해가 컸던 금강유역을 대상으로 모형의 적용성을 평가하고자 한다. 평가기간은 2006~2020년으로써 유량관측 지점별 매개변수 검·보정을 수행하였다. 관측 및 모의 유량에 대한 도시적 및 통계적(CC, RMSE, NSE) 평가를 수행하여 유출 모의에 대한 정확도를 평가하였다. 평가결과, 관측 및 모의 유량 간의 거동이 유사한 것으로 나타났으며 첨두유량 및 시간이 비교적 잘 일치하는 것으로 나타나 대상유역의 신뢰도 높은 유출량을 모의하는데 적합한 것으로 확인되었다. 본 연구 결과는 향후 AI 기법과 연계한 돌발홍수 예측 연구에 활용하여 정확도 높은 유역 홍수량 예측 및 선행시간 확보에 도움이 될 것으로 기대된다.

  • PDF

유역 및 강우 특성인자를 고려한 딥러닝 기반의 강우손실 예측 (Prediction of rainfall abstraction based on deep learning considering watershed and rainfall characteristic factors)

  • 정민엽;김대홍;김석균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.37-37
    • /
    • 2022
  • 유효우량 산정을 위하여 국내에서 주로 사용되는 모형은 NRCS-CN(Natural Resources Conservation Service - curve number) 모형으로, 유역의 유출 능력을 나타내는 유출곡선지수(runoff curve number, CN)와 같은 NRCS-CN 모형의 매개변수들은 관측 강우-유출자료 또는 토양도, 토지피복지도 등을 이용하여 유역마다 결정된 값이 사용되고 있다. 그러나 유역의 CN값은 유역의 토양 상태와 같은 환경적 조건에 따라 달라질 수 있으며, 이를 반영하기 위하여 선행토양함수조건(antecedent moisture condition, AMC)을 이용하여 CN값을 조정하는 방법이 사용되고 있으나, AMC 조건에 따른 CN 값의 갑작스런 변화는 유출량의 극단적인 변화를 가져올 수 있다. NRCS-CN 모형과 더불어 강우 손실량 산정에 많이 사용되는 모형으로 Green-Ampt 모형이 있다. Green-Ampt 모형은 유역에서 발생하는 침투현상의 물리적 과정을 고려하는 모형이라는 장점이 있으나, 모형에 활용되는 다양한 물리적인 매개변수들을 산정하기 위해서는 유역에 대한 많은 조사가 선행되어야 한다. 또한 이렇게 산정된 매개변수들은 유역 내 토양이나 식생 조건 등에 따른 여러 불확실성을 내포하고 있어 실무적용에 어려움이 있다. 따라서 본 연구에서는, 현재 사용되고 있는 강우손실 모형들의 매개변수를 추정하기 위한 방법을 제시하고자 하였다. 본 연구에서 제시하는 방법은 인공지능(AI) 기술 중 하나인 딥러닝(deep-learning) 기법을 기반으로 하고 있으며, 딥러닝 모형으로는 장단기 메모리(Long Short-Term Memory, LSTM) 모형이 활용되었다. 딥러닝 모형의 입력 데이터는 유역에서의 강우특성이나 토양수분, 증발산, 식생 특성들을 나타내는 인자이며, 모의 결과는 유역에서 발생한 총 유출량으로 강우손실 모형들의 매개변수 값들은 이들을 활용하여 도출될 수 있다. 산정된 매개변수 값들을 강우손실 모형에 적용하여 실제 유역들에서의 유효우량 산정에 활용해보았으며, 동역학파 기반의 강우-유출 모형을 사용하여 유출을 예측해보았다. 예측된 유출수문곡선을 관측 자료와 비교 시 NSE=0.5 이상으로 산정되어 유출이 적절히 예측되었음을 확인했다.

  • PDF

강화학습 기반 피난 알고리즘 개발과 성능평가에 관한 기초연구 (A Basic Research on the Development and Performance Evaluation of Evacuation Algorithm Based on Reinforcement Learning)

  • 황광일;김별
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.132-133
    • /
    • 2023
  • 재난 상황에서 사람을 안전하게 피난시키는 것은 매우 중요하다. 인명 안전을 위한 다양한 피난 시뮬레이션 툴이 개발되어 사용되고 있지만, 대부분의 툴에 적용된 방식은 Map을 분석하여 최단 경로를 추출해 Agent를 결정된 경로를 따라 이동시키는 알고리즘으로 구현되었다. 이 방법은 재난 환경에 변화가 없는 조건에서 피난경로를 빠른 시간에 예측하기에 적합하다. 그러나 재난상황은 시시각각으로 변화하기 때문에 피난알고리즘은 이에 대응할 수 있어야 하지만 기존 알고리즘으로는 대응이 곤란한 실정이다. 강화학습을 기반으로 한 인공지능 기술을 활용하면 변화하는 재난에 대응 가능한 피난경로 알고리즘의 개발 가능할 것으로 예상된다. 이에 본 연구에서는 알고리즘 개발의 기초단계로서, 강화학습 기법으로 개발된 피난 알고리즘이 IMO MSC.1/Circ1533에서 요구하는 피난시뮬레이션 툴의 성능조건을 만족하는지 여부를 평가하였다.

  • PDF

Development of AI-based Smart Agriculture Early Warning System

  • Hyun Sim;Hyunwook Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.67-77
    • /
    • 2023
  • 본 연구는 스마트팜 환경에서 진행된 혁신적인 연구로, 딥러닝을 기반으로 한 질병 및 해충 탐지 모델을 개발하고, 이를 지능형 사물인터넷(IoT) 플랫폼에 적용하여 디지털 농업 환경 구현의 새로운 가능성을 탐색하였다. 연구의 핵심은 Pseudo-Labeling, RegNet, EfficientNet 등 최신 ImageNet 모델과 전처리 방식을 통합하여, 복잡한 농업 환경에서 다양한 질병과 해충을 높은 정확도로 탐지하는 것이었다. 이를 위해 앙상블 학습 기법을 적용하여 모델의 정확도와 안정성을 극대화했으며, 평균 정밀도(mAP), 정밀도, 재현율, 정확도, 박스 손실 등의 다양한 성능 지표를 통해 모델을 평가하였다. 또한, SHAP 프레임워크를 활용하여 모델의 예측 기준에 대한 깊은 이해를 도모하였고, 이를 통해 모델의 결정 과정을 보다 투명하게 만들었다. 이러한 분석은 모델이 어떻게 다양한 변수들을 고려하여 질병 및 해충을 탐지하는지에 대한 중요한 통찰력을 제공하였다.