The purpose of this study is to suggest implications for mathematics teaching and learning when using AI-based educational platforms that support personalized mathematics learning. To this end, we selected five platforms(Knock-knock! Math Expedition, knowre, Khan Academy, MATHia, CENTURY) and analyzed how the AI-based educational platforms for mathematics reflect the three elements(PLP, PLN, PLE) to support personalized learning. The results of this study showed that although the characteristics of PLP, PLN, and PLE implemented on each platform varied, they were designed to form PLEs that allow learners to make their autonomous decisions about learning based on PLP and PLN. The significance of this study can be found in that it has improved the understanding and practicability of personalized mathematics learning with the AI-based educational platforms.
Clear analysis and diagnosis of various characteristic factors of individual students is the most important in order to realize individual customized teaching and learning, which is considered the most essential function of math artificial intelligence-based digital textbooks. In this study, analysis factors and tools for individual customized learning diagnosis and construction models for data collection and analysis were derived from mathematical AI digital textbooks. To this end, according to the Ministry of Education's recent plan to apply AI digital textbooks, the demand for AI digital textbooks in mathematics, personalized learning and prior research on data for it, and factors for learner analysis in mathematics digital platforms were reviewed. As a result of the study, the researcher summarized the factors for learning analysis as factors for learning readiness, process and performance, achievement, weakness, and propensity analysis as factors for learning duration, problem solving time, concentration, math learning habits, and emotional analysis as factors for confidence, interest, anxiety, learning motivation, value perception, and attitude analysis as factors for learning analysis. In addition, the researcher proposed noon data on the problem, learning progress rate, screen recording data on student activities, event data, eye tracking device, and self-response questionnaires as data collection tools for these factors. Finally, a data collection model was proposed that time-series these factors before, during, and after learning.
This study investigates the changes in teachers' roles as the impact of AI on school education expands. Traditionally, teachers have been responsible for core aspects of classroom instruction, curriculum development, assessment, and feedback. AI can automate these processes, particularly enhancing efficiency through personalized learning. AI also supports complex classroom management tasks such as student tracking, behavior detection, and group activity analysis using integrated camera and microphone systems. However, AI struggles to automate aspects of counseling and interpersonal communication, which are crucial in student life guidance. While direct conversational replacement by AI is challenging, AI can assist teachers by providing data-driven insights and pre-conversation resources. Key competencies required for teachers in the AI era include expertise in advanced instructional methods, dataset analysis, personalized learning facilitation, student and parent counseling, and AI digital literacy. Teachers should collaborate with AI to emphasize creativity, adjust personalized learning paths based on AI-generated datasets, and focus on areas less amenable to AI automation, such as individualized learning and counseling. Essential skills include AI digital literacy and proficiency in understanding and managing student data.
Journal of The Korean Association of Information Education
/
v.24
no.1
/
pp.59-69
/
2020
The purpose of this study is to design the framework of evaluation on learner's cognitive skill for artificial intelligence(AI) education through computational thinking. To design the rubric and framework for evaluating the change of leaner's intrinsic thinking, the evaluation process was consisted of a sequential stage with a) agency that cognitive learning assistance for data collection, b) abstraction that recognizes the pattern of data and performs the categorization process by decomposing the characteristics of collected data, and c) modeling that constructing algorithms based on refined data through abstraction. The evaluating framework was designed for not only the cognitive domain of learners' perceptions, learning, behaviors, and outcomes but also the areas of knowledge, competencies, and attitudes about the problem-solving process and results of learners to evaluate the changes of inherent cognitive learning about AI education. The results of the research are meaningful in that the evaluating framework for AI education was developed for the development of individualized evaluation tools according to the context of teaching and learning, and it could be used as a standard in various areas of AI education in the future.
Journal of Korea Entertainment Industry Association
/
v.15
no.4
/
pp.279-286
/
2021
In this study, we looked at the appearance of Edutech, which is being put into the educational field after Corona 19, with the advent of the 4th industrial revolution. In the era of the 4th industrial revolution, the infrastructure, data, and service of Smart Stick that actively utilized ICT became the main pillars of smart education. In particular, smart education is being implemented through e-learning, smart learning, and edutech, and on this basis, it has become possible through the expansion and use of the Internet and computers, the dissemination of smart devices, and a software foundation using big data. Based on this, it was confirmed that Edutech is being implemented through the establishment of a quarantine safety net, a learning safety net, and a care safety net for individual learners and safe life based on artificial intelligence. Lastly, in order for edutech education using big data to become a discourse for everyone, it is necessary to consider artificial intelligence and ethics in the use and application of edutech.
So Ryung Lee;Hyeon June Jang;Jin Wook Lee;Sung Hoon Kim
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.511-511
/
2023
기후변화로 동절기 기온 저하에 따른 수도계량기의 동파는 지속적으로 심화되고 있으며, 이는 계량기 교체 비용, 누수, 누수량 동결에 의한 2차 피해, 단수 등 사회적 문제를 야기한다. 이와같은 문제를 해결하고자 구조적 대책으로 개별 가정에서 동파 방지형 계량기를 설치할 수 있으나 이를 위한 비용발생이 상당하고, 비구조적 대책으로는 기상청의 동파 지도 알림 서비스를 활용하여 사전적으로 대응하고자 하나, 기상청자료는 대기 온도를 중심으로 제공하고 있기 때문에 해당서비스만으로는 계량기의 동파를 예측하는데 필요한 추가적인 다양한 변수를 활용하는데 한계가 있다. 최근 정부와 공공부문에서 22개 지역, 110개소 이상의 수도계량기함내 IoT 온도센서를 시범 설치하여 계량기 함내의 상태 등을 확인할 수 있는 사업을 수행했다. 전국적인 계량기 상태의 예측과 진단을 위해서는 추가적인 센서 설치가 필요할 것이나, IoT센서 설치 비용 등의 문제로 추가 설치가 더딘 실정이다. 본 연구에서는 겨울 동파 예방을 위해 실제 온도센서를 기반으로 가상센서를 구축하고, 이를 혼합한 하이브리드 방식으로 동파위험 기준에 따라 전국 동파위험 지도를 구축하였다. 가상센서 개발을 위해 독립변수로 위경도, 고도, 음·양지, 보온재 여부 및 기상정보(기온, 강수량, 풍속, 습도)를 활용하고, 종속변수로 실제 센서의 온도를 사용하여 기계학습 모델을 개발하였다. 지역 특성에 따라 정확한 모델을 구축하기 위해 위치정보 및 보온재여부 등의 변수를 활용하여 K-means 방법으로 군집화 하였으며, 각 군집별로 3가지의 기계학습 회귀모델을 적용하였다. 최적의 군집 수를 검토한 결과 4개가 적정한 것으로 판단되었다. 군집의 특성은 지역별 구분과 유사한 패턴을 보이며, 모든 군집에서 Gradient Boosting 회귀모델을 적용하는 것이 적합한 것으로 나타났다. 본 연구에서 개발한 모델을 바탕으로 조건에 따라 동파 예측 알람서비스에 실무적으로 활용할 수 있도록 양호·주의·위험·매우위험 총 4개의 기준을 설정하였다. 실제 본 연구에서 개발된 알고리즘을 국가상수도정보 시스템에 반영하여 테스트 수행중에 있으며, 향후 지속 검증을 할 예정에 있다. 이를 통해 동파 예방 및 피해 최소화, 물절약 등 직간접적 편익이 기대된다.
Sejun Oh;Jungeun Yoon;Yoojin Chung;Yoonjoo Cho;Hyosup Shim;Oh Nam Kwon
The Mathematical Education
/
v.63
no.3
/
pp.549-571
/
2024
As digital·AI-based teaching and learning is emphasized, discussions on the educational use of generative AI are becoming more active. This study analyzed the mathematical performance of ChatGPT 4, Claude 3 Opus, and Gemini Advanced on solving examples and problems from five first-year high school math textbooks. As a result of examining the overall correct answer rate and characteristics of each skill for a total of 1,317 questions, ChatGPT 4 had the highest overall correct answer rate of 0.85, followed by Claude 3 Opus at 0.67, and Gemini Advanced at 0.42. By skills, all three models showed high correct answer rates in 'Find functions' and 'Prove', while relatively low correct answer rates in 'Explain' and 'Draw graphs'. In particular, in 'Count', ChatGPT 4 and Claude 3 Opus had a correct answer rate of 1.00, while Gemini Advanced was low at 0.56. Additionally, all models had difficulty in explaining using Venn diagrams and creating images. Based on the research results, teachers should identify the strengths and limitations of each AI model and use them appropriately in class. This study is significant in that it suggested the possibility of use in actual classes by analyzing the mathematical performance of generative AI. It also provided important implications for redefining the role of teachers in mathematics education in the era of artificial intelligence. Further research is needed to develop a cooperative educational model between generative AI and teachers and to study individualized learning plans using AI.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.324-324
/
2022
정확한 오염물질 예측은 기상학, 자연재해, 기후변화 연구 등 현장에서 필수적인 과제 중 하나이다. 주변 관측소에서 얻은 데이터를 사용하는 경우 모델 학습을 위한 불필요한 데이터로 인해 예측 결과에 왜곡 문제가 있을 수 있습니다. 따라서, 우리는 종합적인 대기질 지수 행동에 영향을 미치는 요인을 제공하는 최적의 데이터 소스를 찾기 위해 네트워크 방식을 사용했습니다. 본 연구에서는 2015년부터 2020년까지 우리나라의 6개 오염물질과 종합적인 대기질 지수 예측에 대한 네트워크 기법을 적용한 LSTM 및 DNN 모델을 적용하였다. 본 연구는 미세먼지(PM10), 초미세먼지(PM2.5), 오존(O3), 이산화황(SO2), 이산화질소(NO2), 일산화탄소(CO) 등 6가지 오염물질을 기반으로 종합적인 대기질 지수를 예측하는 2단계로 구성되어 있다. LSTM을 이용하여, 개별적으로 예측된 6가지 오염물질을 이용하여 DNN 모형을 이용하여 종합적인 대기질 지수를 예측한다. 6가지 오염물질에 대한 각 모델의 예측능력과 종합적인 대기질 지수 예측은 관측된 대기질 데이터와 비교하여 평가하였다. 본 연구는 심층신경망 모델과 네트워크 방식을 결합한 것이 높은 예측력을 제공함을 보여주었으며, 종합적인 대기질 지수 예측을 위한 최적의 모델로 선정되었다. 재난관리의 필요성이 증가함에 따라 네트워크 방식의 딥러닝 모델은 자연재해 피해를 줄이고 재난관리를 개선할 수 있는 충분한 잠재력을 가질 것으로 기대된다.
The Journal of the Convergence on Culture Technology
/
v.8
no.6
/
pp.801-806
/
2022
In the modern era, the necessity of color capability in the digital era is the demand of the era, and research on improving color practice on the subdivided digital four areas that are not in the existing practice is needed. For digital majors who are difficult to solve in existing paint color practice, classes in digital color practice in four more specialized areas are needed, and the use of efficient artificial intelligence was studied for classes in digitized color and color sense. In this paper, we tried to show the expansion of the color practice area by suggesting digital color practice and color matching method based on Photoshop artificial intelligence and big data technology that existing color and color matching were practice that only CMYK could do. In addition, based on the color quantification data of individual users provided by the latest Adobe Sceney program artificial intelligence, the purpose of the practice was to improve learners' predictions of actual color combinations and random colors using filter effects. In conclusion, it is a study on the use of programs that eliminate ambiguity in the mixing process of existing paint practice, secure digital color details, and propose a practical method that can provide effective learning methods for beginners and intermediates to develop their senses through artificial intelligence support. The Adobe program practice method necessary for coloration and main color through theoretical consideration and improvement of teaching skills that are better than existing paint practice were presented.
Journal of the Institute of Convergence Signal Processing
/
v.23
no.3
/
pp.150-159
/
2022
This paper presents an implementation of detecting whether a helmet is worn and there is a fall accident through individual image analysis in real-time from extracting the image objects of several workers active in the industrial field. In order to detect image objects of workers, YOLO, a deep learning-based computer vision model, was used, and for whether a helmet is worn or not, the extracted images with 5,000 different helmet learning data images were applied. For whether a fall accident occurred, the position of the head was checked using the Pose real-time body tracking algorithm of Mediapipe, and the movement speed was calculated to determine whether the person fell. In addition, to give reliability to the result of a falling accident, a method to infer the posture of an object by obtaining the size of YOLO's bounding box was proposed and implemented. Finally, Telegram API Bot and Firebase DB server were implemented for notification service to administrators.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.