• Title/Summary/Keyword: AI 기반 개별화 학습

Search Result 14, Processing Time 0.028 seconds

AI-Based Educational Platform Analysis Supporting Personalized Mathematics Learning (개별화 맞춤형 수학 학습을 지원하는 AI 기반 플랫폼 분석)

  • Kim, Seyoung;Cho, Mi Kyung
    • Communications of Mathematical Education
    • /
    • v.36 no.3
    • /
    • pp.417-438
    • /
    • 2022
  • The purpose of this study is to suggest implications for mathematics teaching and learning when using AI-based educational platforms that support personalized mathematics learning. To this end, we selected five platforms(Knock-knock! Math Expedition, knowre, Khan Academy, MATHia, CENTURY) and analyzed how the AI-based educational platforms for mathematics reflect the three elements(PLP, PLN, PLE) to support personalized learning. The results of this study showed that although the characteristics of PLP, PLN, and PLE implemented on each platform varied, they were designed to form PLEs that allow learners to make their autonomous decisions about learning based on PLP and PLN. The significance of this study can be found in that it has improved the understanding and practicability of personalized mathematics learning with the AI-based educational platforms.

A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning (개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델)

  • Lee, Hwayoung
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.333-348
    • /
    • 2023
  • Clear analysis and diagnosis of various characteristic factors of individual students is the most important in order to realize individual customized teaching and learning, which is considered the most essential function of math artificial intelligence-based digital textbooks. In this study, analysis factors and tools for individual customized learning diagnosis and construction models for data collection and analysis were derived from mathematical AI digital textbooks. To this end, according to the Ministry of Education's recent plan to apply AI digital textbooks, the demand for AI digital textbooks in mathematics, personalized learning and prior research on data for it, and factors for learner analysis in mathematics digital platforms were reviewed. As a result of the study, the researcher summarized the factors for learning analysis as factors for learning readiness, process and performance, achievement, weakness, and propensity analysis as factors for learning duration, problem solving time, concentration, math learning habits, and emotional analysis as factors for confidence, interest, anxiety, learning motivation, value perception, and attitude analysis as factors for learning analysis. In addition, the researcher proposed noon data on the problem, learning progress rate, screen recording data on student activities, event data, eye tracking device, and self-response questionnaires as data collection tools for these factors. Finally, a data collection model was proposed that time-series these factors before, during, and after learning.

Strengthening Teacher Competencies in Response to the Expanding Role of AI (AI의 역할 확대에 따른 교사 역량 강화 방안)

  • Soo-Bum Shin
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.513-520
    • /
    • 2024
  • This study investigates the changes in teachers' roles as the impact of AI on school education expands. Traditionally, teachers have been responsible for core aspects of classroom instruction, curriculum development, assessment, and feedback. AI can automate these processes, particularly enhancing efficiency through personalized learning. AI also supports complex classroom management tasks such as student tracking, behavior detection, and group activity analysis using integrated camera and microphone systems. However, AI struggles to automate aspects of counseling and interpersonal communication, which are crucial in student life guidance. While direct conversational replacement by AI is challenging, AI can assist teachers by providing data-driven insights and pre-conversation resources. Key competencies required for teachers in the AI era include expertise in advanced instructional methods, dataset analysis, personalized learning facilitation, student and parent counseling, and AI digital literacy. Teachers should collaborate with AI to emphasize creativity, adjust personalized learning paths based on AI-generated datasets, and focus on areas less amenable to AI automation, such as individualized learning and counseling. Essential skills include AI digital literacy and proficiency in understanding and managing student data.

Designing the Framework of Evaluation on Learner's Cognitive Skill for Artificial Intelligence Education through Computational Thinking (Computational Thinking 기반 인공지능교육을 통한 학습자의 인지적역량 평가 프레임워크 설계)

  • Shin, Seungki
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.59-69
    • /
    • 2020
  • The purpose of this study is to design the framework of evaluation on learner's cognitive skill for artificial intelligence(AI) education through computational thinking. To design the rubric and framework for evaluating the change of leaner's intrinsic thinking, the evaluation process was consisted of a sequential stage with a) agency that cognitive learning assistance for data collection, b) abstraction that recognizes the pattern of data and performs the categorization process by decomposing the characteristics of collected data, and c) modeling that constructing algorithms based on refined data through abstraction. The evaluating framework was designed for not only the cognitive domain of learners' perceptions, learning, behaviors, and outcomes but also the areas of knowledge, competencies, and attitudes about the problem-solving process and results of learners to evaluate the changes of inherent cognitive learning about AI education. The results of the research are meaningful in that the evaluating framework for AI education was developed for the development of individualized evaluation tools according to the context of teaching and learning, and it could be used as a standard in various areas of AI education in the future.

In the Digital Big Data Classroom Reality and Application of Smart Education : Learner-Centered Education using Edutech (디지털 빅데이터 교실에서 스마트교육의 실제와 활용 : 에듀테크를 활용한 학습자 중심 교육)

  • Kim, Seong-Hee
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.279-286
    • /
    • 2021
  • In this study, we looked at the appearance of Edutech, which is being put into the educational field after Corona 19, with the advent of the 4th industrial revolution. In the era of the 4th industrial revolution, the infrastructure, data, and service of Smart Stick that actively utilized ICT became the main pillars of smart education. In particular, smart education is being implemented through e-learning, smart learning, and edutech, and on this basis, it has become possible through the expansion and use of the Internet and computers, the dissemination of smart devices, and a software foundation using big data. Based on this, it was confirmed that Edutech is being implemented through the establishment of a quarantine safety net, a learning safety net, and a care safety net for individual learners and safe life based on artificial intelligence. Lastly, in order for edutech education using big data to become a discourse for everyone, it is necessary to consider artificial intelligence and ethics in the use and application of edutech.

Development of an AI-based Early Warning System for Water Meter Freeze-Burst Detection Using AI Models (AI기반 물공급 시스템내 동파위험 조기경보를 위한 AI모델 개발 연구)

  • So Ryung Lee;Hyeon June Jang;Jin Wook Lee;Sung Hoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.511-511
    • /
    • 2023
  • 기후변화로 동절기 기온 저하에 따른 수도계량기의 동파는 지속적으로 심화되고 있으며, 이는 계량기 교체 비용, 누수, 누수량 동결에 의한 2차 피해, 단수 등 사회적 문제를 야기한다. 이와같은 문제를 해결하고자 구조적 대책으로 개별 가정에서 동파 방지형 계량기를 설치할 수 있으나 이를 위한 비용발생이 상당하고, 비구조적 대책으로는 기상청의 동파 지도 알림 서비스를 활용하여 사전적으로 대응하고자 하나, 기상청자료는 대기 온도를 중심으로 제공하고 있기 때문에 해당서비스만으로는 계량기의 동파를 예측하는데 필요한 추가적인 다양한 변수를 활용하는데 한계가 있다. 최근 정부와 공공부문에서 22개 지역, 110개소 이상의 수도계량기함내 IoT 온도센서를 시범 설치하여 계량기 함내의 상태 등을 확인할 수 있는 사업을 수행했다. 전국적인 계량기 상태의 예측과 진단을 위해서는 추가적인 센서 설치가 필요할 것이나, IoT센서 설치 비용 등의 문제로 추가 설치가 더딘 실정이다. 본 연구에서는 겨울 동파 예방을 위해 실제 온도센서를 기반으로 가상센서를 구축하고, 이를 혼합한 하이브리드 방식으로 동파위험 기준에 따라 전국 동파위험 지도를 구축하였다. 가상센서 개발을 위해 독립변수로 위경도, 고도, 음·양지, 보온재 여부 및 기상정보(기온, 강수량, 풍속, 습도)를 활용하고, 종속변수로 실제 센서의 온도를 사용하여 기계학습 모델을 개발하였다. 지역 특성에 따라 정확한 모델을 구축하기 위해 위치정보 및 보온재여부 등의 변수를 활용하여 K-means 방법으로 군집화 하였으며, 각 군집별로 3가지의 기계학습 회귀모델을 적용하였다. 최적의 군집 수를 검토한 결과 4개가 적정한 것으로 판단되었다. 군집의 특성은 지역별 구분과 유사한 패턴을 보이며, 모든 군집에서 Gradient Boosting 회귀모델을 적용하는 것이 적합한 것으로 나타났다. 본 연구에서 개발한 모델을 바탕으로 조건에 따라 동파 예측 알람서비스에 실무적으로 활용할 수 있도록 양호·주의·위험·매우위험 총 4개의 기준을 설정하였다. 실제 본 연구에서 개발된 알고리즘을 국가상수도정보 시스템에 반영하여 테스트 수행중에 있으며, 향후 지속 검증을 할 예정에 있다. 이를 통해 동파 예방 및 피해 최소화, 물절약 등 직간접적 편익이 기대된다.

  • PDF

Analysis of generative AI's mathematical problem-solving performance: Focusing on ChatGPT 4, Claude 3 Opus, and Gemini Advanced (생성형 인공지능의 수학 문제 풀이에 대한 성능 분석: ChatGPT 4, Claude 3 Opus, Gemini Advanced를 중심으로)

  • Sejun Oh;Jungeun Yoon;Yoojin Chung;Yoonjoo Cho;Hyosup Shim;Oh Nam Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.549-571
    • /
    • 2024
  • As digital·AI-based teaching and learning is emphasized, discussions on the educational use of generative AI are becoming more active. This study analyzed the mathematical performance of ChatGPT 4, Claude 3 Opus, and Gemini Advanced on solving examples and problems from five first-year high school math textbooks. As a result of examining the overall correct answer rate and characteristics of each skill for a total of 1,317 questions, ChatGPT 4 had the highest overall correct answer rate of 0.85, followed by Claude 3 Opus at 0.67, and Gemini Advanced at 0.42. By skills, all three models showed high correct answer rates in 'Find functions' and 'Prove', while relatively low correct answer rates in 'Explain' and 'Draw graphs'. In particular, in 'Count', ChatGPT 4 and Claude 3 Opus had a correct answer rate of 1.00, while Gemini Advanced was low at 0.56. Additionally, all models had difficulty in explaining using Venn diagrams and creating images. Based on the research results, teachers should identify the strengths and limitations of each AI model and use them appropriately in class. This study is significant in that it suggested the possibility of use in actual classes by analyzing the mathematical performance of generative AI. It also provided important implications for redefining the role of teachers in mathematics education in the era of artificial intelligence. Further research is needed to develop a cooperative educational model between generative AI and teachers and to study individualized learning plans using AI.

Application of AI-based model and Complex Network method for Comprehensive Air-Quality Index prediction (종합대기질 지수 예측을 위한 AI 기반 모형 및 Complex Network 기법 적용)

  • Kim, Dong Hyun;Song, Jae Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.324-324
    • /
    • 2022
  • 정확한 오염물질 예측은 기상학, 자연재해, 기후변화 연구 등 현장에서 필수적인 과제 중 하나이다. 주변 관측소에서 얻은 데이터를 사용하는 경우 모델 학습을 위한 불필요한 데이터로 인해 예측 결과에 왜곡 문제가 있을 수 있습니다. 따라서, 우리는 종합적인 대기질 지수 행동에 영향을 미치는 요인을 제공하는 최적의 데이터 소스를 찾기 위해 네트워크 방식을 사용했습니다. 본 연구에서는 2015년부터 2020년까지 우리나라의 6개 오염물질과 종합적인 대기질 지수 예측에 대한 네트워크 기법을 적용한 LSTM 및 DNN 모델을 적용하였다. 본 연구는 미세먼지(PM10), 초미세먼지(PM2.5), 오존(O3), 이산화황(SO2), 이산화질소(NO2), 일산화탄소(CO) 등 6가지 오염물질을 기반으로 종합적인 대기질 지수를 예측하는 2단계로 구성되어 있다. LSTM을 이용하여, 개별적으로 예측된 6가지 오염물질을 이용하여 DNN 모형을 이용하여 종합적인 대기질 지수를 예측한다. 6가지 오염물질에 대한 각 모델의 예측능력과 종합적인 대기질 지수 예측은 관측된 대기질 데이터와 비교하여 평가하였다. 본 연구는 심층신경망 모델과 네트워크 방식을 결합한 것이 높은 예측력을 제공함을 보여주었으며, 종합적인 대기질 지수 예측을 위한 최적의 모델로 선정되었다. 재난관리의 필요성이 증가함에 따라 네트워크 방식의 딥러닝 모델은 자연재해 피해를 줄이고 재난관리를 개선할 수 있는 충분한 잠재력을 가질 것으로 기대된다.

  • PDF

Digital color practice using Adobe AI intelligence research on application method - Focusing on color practice through Adobe Sensei - (어도비 AI 지능을 활용한 디지털 색채 실습에 관한 적용방식 연구 -쎈쎄이(Adobe Sensei)을 통한 색채 실습을 중심으로-)

  • Cho, Hyun Kyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.801-806
    • /
    • 2022
  • In the modern era, the necessity of color capability in the digital era is the demand of the era, and research on improving color practice on the subdivided digital four areas that are not in the existing practice is needed. For digital majors who are difficult to solve in existing paint color practice, classes in digital color practice in four more specialized areas are needed, and the use of efficient artificial intelligence was studied for classes in digitized color and color sense. In this paper, we tried to show the expansion of the color practice area by suggesting digital color practice and color matching method based on Photoshop artificial intelligence and big data technology that existing color and color matching were practice that only CMYK could do. In addition, based on the color quantification data of individual users provided by the latest Adobe Sceney program artificial intelligence, the purpose of the practice was to improve learners' predictions of actual color combinations and random colors using filter effects. In conclusion, it is a study on the use of programs that eliminate ambiguity in the mixing process of existing paint practice, secure digital color details, and propose a practical method that can provide effective learning methods for beginners and intermediates to develop their senses through artificial intelligence support. The Adobe program practice method necessary for coloration and main color through theoretical consideration and improvement of teaching skills that are better than existing paint practice were presented.

Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident (헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현)

  • Yong-Hwa Jo;Hyuek-Jae Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2022
  • This paper presents an implementation of detecting whether a helmet is worn and there is a fall accident through individual image analysis in real-time from extracting the image objects of several workers active in the industrial field. In order to detect image objects of workers, YOLO, a deep learning-based computer vision model, was used, and for whether a helmet is worn or not, the extracted images with 5,000 different helmet learning data images were applied. For whether a fall accident occurred, the position of the head was checked using the Pose real-time body tracking algorithm of Mediapipe, and the movement speed was calculated to determine whether the person fell. In addition, to give reliability to the result of a falling accident, a method to infer the posture of an object by obtaining the size of YOLO's bounding box was proposed and implemented. Finally, Telegram API Bot and Firebase DB server were implemented for notification service to administrators.