• Title/Summary/Keyword: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.033 seconds

Technology Convergence & Trend Analysis of Biohealth Industry in 5 Countries : Using patent co-classification analysis and text mining (5개국 바이오헬스 산업의 기술융합과 트렌드 분석 : 특허 동시분류분석과 텍스트마이닝을 활용하여)

  • Park, Soo-Hyun;Yun, Young-Mi;Kim, Ho-Yong;Kim, Jae-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.9-21
    • /
    • 2021
  • The study aims to identify convergence and trends in technology-based patent data for the biohealth sector in IP5 countries (KR, EP, JP, US, CN) and present the direction of development in that industry. We used patent co-classification analysis-based network analysis and TF-IDF-based text mining as the principal methodology to understand the current state of technology convergence. As a result, the technology convergence cluster in the biohealth industry was derived in three forms: (A) Medical device for treatment, (B) Medical data processing, and (C) Medical device for biometrics. Besides, as a result of trend analysis based on technology convergence results, it is analyzed that Korea is likely to dominate the market with patents with high commercial value in the future as it is derived as a market leader in (B) medical data processing. In particular, the field is expected to require technology convergence activation policies and R&D support strategies for the technology as the possibility of medical data utilization by domestic bio-health companies expands, along with the policy conversion of the "Data 3 Act" passed by the National Assembly in January 2019.

Analysis of the Status of Natural Language Processing Technology Based on Deep Learning (딥러닝 중심의 자연어 처리 기술 현황 분석)

  • Park, Sang-Un
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.63-81
    • /
    • 2021
  • The performance of natural language processing is rapidly improving due to the recent development and application of machine learning and deep learning technologies, and as a result, the field of application is expanding. In particular, as the demand for analysis on unstructured text data increases, interest in NLP(Natural Language Processing) is also increasing. However, due to the complexity and difficulty of the natural language preprocessing process and machine learning and deep learning theories, there are still high barriers to the use of natural language processing. In this paper, for an overall understanding of NLP, by examining the main fields of NLP that are currently being actively researched and the current state of major technologies centered on machine learning and deep learning, We want to provide a foundation to understand and utilize NLP more easily. Therefore, we investigated the change of NLP in AI(artificial intelligence) through the changes of the taxonomy of AI technology. The main areas of NLP which consists of language model, text classification, text generation, document summarization, question answering and machine translation were explained with state of the art deep learning models. In addition, major deep learning models utilized in NLP were explained, and data sets and evaluation measures for performance evaluation were summarized. We hope researchers who want to utilize NLP for various purposes in their field be able to understand the overall technical status and the main technologies of NLP through this paper.

A Study on the Information Strategy Planing for the Construction of the Online Information System for the Transaction of Art (미술품 거래정보 온라인 제공시스템 구축을 위한 정보전략계획)

  • Seo, Byeong-Min
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.61-70
    • /
    • 2019
  • The The government has recently announced its mid- to long-term plans for promoting art. With the advent of the 4th industrial revolution, contemporary art contents that are integrated with Intelligent Information Technologies such as Artificial Intelligence (AI), Virtual Reality (VR), and Big Data are being introduced, and social interest in humanities and creative convergence is rising. In addition, the industrialization of the art market is expanding amid the rising popularity of art among the general public and the growing interest of art as an investment replacement system, along with the strengthening of the creative personality education of our Education Ministry. Therefore, it is necessary to establish a strategy for transparency and revitalization of the art market by providing comprehensive information such as search functions, analysis data, and criticism by writer and price. This paper has established an information system plan for the establishment of an online supply system for art transaction information, providing auction transaction information for art market, providing report and news for art market, providing public relations platform, and providing art market analysis service and membership relationship management service. To this end, the future model was established through environmental analysis and focus analysis of the art market, and strategic tasks and implementation plans were established accordingly.

A Study on Geospatial Information Role in Digital Twin (디지털트윈에서 공간정보 역할에 관한 연구)

  • Lee, In-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.268-278
    • /
    • 2021
  • Technologies that are leading the fourth industrial revolution, such as the Internet of Things (IoT), big data, artificial intelligence (AI), and cyber-physical systems (CPS) are developing and generalizing. The demand to improve productivity, economy, safety, etc., is spreading in various industrial fields by applying these technologies. Digital twins are attracting attention as an important technology trend to meet demands and is one of the top 10 tasks of the Korean version of the New Deal. In this study, papers, magazines, reports, and other literature were searched using Google. In order to investigate the contribution or role of geospatial information in the digital twin application, the definition of a digital twin, we investigated technology trends of domestic and foreign companies; the components of digital twins required in manufacturing, plants, and smart cities; and the core techniques for driving a digital twin. In addition, the contributing contents of geospatial information were summarized by searching for a sentence or word linked between geospatial-related keywords (i.e., Geospatial Information, Geospatial data, Location, Map, and Geodata and Digital Twin). As a result of the survey, Geospatial information is not only providing a role as a medium connecting objects, things, people, processes, data, and products, but also providing reliable decision-making support, linkage fusion, location information provision, and frameworks. It was found that it can contribute to maximizing the value of utilization of digital twins.

Design and implementation of an AI-based speed quiz content for social robots interacting with users (사람과 상호작용하는 소셜 로봇을 위한 인공지능 기반 스피드 퀴즈 콘텐츠의 설계와 구현)

  • Oh, Hyun-Jung;Kang, A-Reum;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.611-618
    • /
    • 2020
  • In this paper, we propose a design and implementation method of speed quiz content that can be driven by a social robot capable of interacting with humans, and a method of developing an intelligent module necessary for implementation. In addition, we propose a method of implementing speed quiz content through the process of constructing a map by arranging and connecting intelligent module blocks. Recently, software education has become mandatory and interest in programming is increasing. However, programming is difficult for students without basic knowledge of programming languages to directly access, and interest in block-type programming platforms suitable for beginners is growing. The block-type programming platform used in this paper is a platform that supports immediate and intuitive programming by supporting interactions between humans and robots. In this paper, the intelligent module implemented for the speed quiz content was used by blocking it within a block-type programming platform. In order to implement the scenario of the speed quiz content proposed in this paper, we implement a total of three image-based artificial intelligence modules. In addition to the intelligent module, various functional blocks were placed to implement the speed quiz content. In this paper, we propose a method of designing a speed quiz content scenario and a method of implementing an intelligent module for speed quiz content.

Location Tracking and Visualization of Dynamic Objects using CCTV Images (CCTV 영상을 활용한 동적 객체의 위치 추적 및 시각화 방안)

  • Park, Sang-Jin;Cho, Kuk;Im, Junhyuck;Kim, Minchan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.53-65
    • /
    • 2021
  • C-ITS(Cooperative Intelligent Transport System) that pursues traffic safety and convenience uses various sensors to generate traffic information. Therefore, it is necessary to improve the sensor-related technology to increase the efficiency and reliability of the traffic information. Recently, the role of CCTV in collecting video information has become more important due to advances in AI(Artificial Intelligence) technology. In this study, we propose to identify and track dynamic objects(vehicles, people, etc.) in CCTV images, and to analyze and provide information about them in various environments. To this end, we conducted identification and tracking of dynamic objects using the Yolov4 and Deepsort algorithms, establishment of real-time multi-user support servers based on Kafka, defining transformation matrices between images and spatial coordinate systems, and map-based dynamic object visualization. In addition, a positional consistency evaluation was performed to confirm its usefulness. Through the proposed scheme, we confirmed that CCTVs can serve as important sensors to provide relevant information by analyzing road conditions in real time in terms of road infrastructure beyond a simple monitoring role.

Quantitative Evaluations of Deep Learning Models for Rapid Building Damage Detection in Disaster Areas (재난지역에서의 신속한 건물 피해 정도 감지를 위한 딥러닝 모델의 정량 평가)

  • Ser, Junho;Yang, Byungyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.381-391
    • /
    • 2022
  • This paper is intended to find one of the prevailing deep learning models that are a type of AI (Artificial Intelligence) that helps rapidly detect damaged buildings where disasters occur. The models selected are SSD-512, RetinaNet, and YOLOv3 which are widely used in object detection in recent years. These models are based on one-stage detector networks that are suitable for rapid object detection. These are often used for object detection due to their advantages in structure and high speed but not for damaged building detection in disaster management. In this study, we first trained each of the algorithms on xBD dataset that provides the post-disaster imagery with damage classification labels. Next, the three models are quantitatively evaluated with the mAP(mean Average Precision) and the FPS (Frames Per Second). The mAP of YOLOv3 is recorded at 34.39%, and the FPS reached 46. The mAP of RetinaNet recorded 36.06%, which is 1.67% higher than YOLOv3, but the FPS is one-third of YOLOv3. SSD-512 received significantly lower values than the results of YOLOv3 on two quantitative indicators. In a disaster situation, a rapid and precise investigation of damaged buildings is essential for effective disaster response. Accordingly, it is expected that the results obtained through this study can be effectively used for the rapid response in disaster management.

A Study on the Restoration of Korean Traditional Palace Image by Adjusting the Receptive Field of Pix2Pix (Pix2Pix의 수용 영역 조절을 통한 전통 고궁 이미지 복원 연구)

  • Hwang, Won-Yong;Kim, Hyo-Kwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.360-366
    • /
    • 2022
  • This paper presents a AI model structure for restoring Korean traditional palace photographs, which remain only black-and-white photographs, to color photographs using Pix2Pix, one of the adversarial generative neural network techniques. Pix2Pix consists of a combination of a synthetic image generator model and a discriminator model that determines whether a synthetic image is real or fake. This paper deals with an artificial intelligence model by adjusting a receptive field of the discriminator, and analyzes the results by considering the characteristics of the ancient palace photograph. The receptive field of Pix2Pix, which is used to restore black-and-white photographs, was commonly used in a fixed size, but a fixed size of receptive field is not suitable for a photograph which consisting with various change in an image. This paper observed the result of changing the size of the existing fixed a receptive field to identify the proper size of the discriminator that could reflect the characteristics of ancient palaces. In this experiment, the receptive field of the discriminator was adjusted based on the prepared ancient palace photos. This paper measure a loss of the model according to the change in a receptive field of the discriminator and check the results of restored photos using a well trained AI model from experiments.

An Exploratory Research on the Effects for SMEs of the Technology Battle between the United States and China - A Focus on Information Security Issues of Huawei (미·중 기술 갈등에 따른 우리나라 중소기업의 파급효과에 관한 탐색적 연구 -화웨이 정보보안 이슈를 중심으로 -)

  • Park, Munsu;Son, Wonbae
    • Korean small business review
    • /
    • v.42 no.1
    • /
    • pp.43-56
    • /
    • 2020
  • The technology conflict between the U.S. and China is deepening recently. The U.S.-China battle began as a national security issue but is comprehending as a U.S.'s check for China's rapid technological advancement. China is rapidly growing in several indexes including R&D expenditure, patent application, and publications, and is challenging the U.S. in 5G and Artificial Intelligence. In 2018, Huawei became the largest 5G network/equipment provider and second largest smart phone manufacturer in the world. Now, Huawei is outperforming at AI chipset manufacturing, Bigdata analysis and cloud, positioning to become a critical player in the 4th industrial revolution. The purpose of this research is to analyze the effect of recent Huawei issues to Korean SMEs focusing on the relation between Huawei and Korean companies; the cooperation status from the Global Value Chain (GVC) perpsective, and Korean government's policies related to Huawei's information security issues will be the three main frames for the analysis. Then, this research proposes policy implications such as increasing Korea's competitiveness in manufacturing and information security.

SIEM System Performance Enhancement Mechanism Using Active Model Improvement Feedback Technology (능동형 모델 개선 피드백 기술을 활용한 보안관제 시스템 성능 개선 방안)

  • Shin, Youn-Sup;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.896-905
    • /
    • 2021
  • In the field of SIEM(Security information and event management), many studies try to use a feedback system to solve lack of completeness of training data and false positives of new attack events that occur in the actual operation. However, the current feedback system requires too much human inputs to improve the running model and even so, those feedback from inexperienced analysts can affect the model performance negatively. Therefore, we propose "active model improving feedback technology" to solve the shortage of security analyst manpower, increasing false positive rates and degrading model performance. First, we cluster similar predicted events during the operation, calculate feedback priorities for those clusters and select and provide representative events from those highly prioritized clusters using XAI (eXplainable AI)-based event visualization. Once these events are feedbacked, we exclude less analogous events and then propagate the feedback throughout the clusters. Finally, these events are incrementally trained by an existing model. To verify the effectiveness of our proposal, we compared three distinct scenarios using PKDD2007 and CSIC2012. As a result, our proposal confirmed a 30% higher performance in all indicators compared to that of the model with no feedback and the current feedback system.