• Title/Summary/Keyword: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.026 seconds

Intelligent Emergency Alarm System based on Multimedia IoT for Smart City

  • Kim, Shin;Yoon, Kyoungro
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2019
  • These-days technology related to IoT (Internet of Thing) is widely used and there are many types of smart system based IoT like smart health, smart building and so on. In smart health system, it is possible to check someone's health by analyzing data from wearable IoT device like smart watch. Smart building system aims to collect data from sensor such as humidity, temperature, human counter like that and control the building for energy efficiency, security, safety and so forth. Furthermore, smart city system can comprise several smart systems like smart building, smart health, smart mobility, smart energy and etc. In this paper, we propose multimedia IoT based intelligent emergency alarm system for smart city. In existing IoT based smart system, it communicates lightweight data like text data. In the past, due to network's limitations lightweight IoT protocol was proposed for communicating data between things but now network technology develops, problem which is to communicate heavy data is solving. The proposed system obtains video from IP cameras/CCTVs, analyses the video by exploiting AI algorithm for detecting emergencies and prevents them which cause damage or death. If emergency is detected, the proposed system sends warning message that emergency may occur to people or agencies. We built prototype of the intelligent emergency alarm system based on MQTT and assured that the system detected dangerous situation and sent alarm messages. From the test results, it is expected that the system can prevent damages of people, nature and save human life from emergency.

An Approach of Cognitive Health Advisor Model for Untact Technology Environment (언택트 기술 환경에서의 지능형 헬스 어드바이저 모델 접근 방안)

  • Hwang, Tae-Ho;Lee, Kang-Yoon
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.139-145
    • /
    • 2020
  • In the era of the 4th Industrial Revolution, the use of information based on AI APIs has a great influence on industry and life. In particular, the use of artificial intelligence data in the medical field will have many changes and effects on society. This paper is to study the necessary components to implement the "Cognitive Health Advisor model (CHA model)" and to implement the "CHA model using chatbot" based on this. It uses the open Cognitive chatbot to analyze and analyze the health status of users changing in their daily lives. The user's health information analyzed by the biometric sensor and chatbot consultation delivers the information to the user through the chatbot. And it implements a cognitive health advisor model that provides educational information for users' health promotion. Through this implementation, it intends to confirm the possibility of future use and to suggest research directions.

Development and evaluation of ANFIS-based method for hydrological drought outlook method (수문학적 가뭄전망을 위한 ANFIS 활용 기법 개발 및 평가)

  • Moon, Geon Ho;Kim, Seon Ho;Bae, Deg Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.123-123
    • /
    • 2018
  • 가뭄은 홍수와 달리 진행속도가 비교적 느리기 때문에 초기에 감지한다면 피해를 최소화 할 수 있다. 국내에서는 가뭄전망을 위해 물리적 기반의 기상-수문연계해석 시스템을 구축하여 월 내지 계절전망을 수행하고 있다. 물리적 기반의 가뭄전망은 수치예보모델의 불확실성을 가지고 있으므로 예보 정확도 개선의 측면에서는 통계적 모델을 같이 활용하는 것이 바람직하다. 최근 국외에서는 통계적 방법인 AI (Artificial Intelligence) 기술을 사용하여 가뭄을 전망하는 연구가 활발히 진행 중이나, 아직까지 국내에서는 관련연구가 미흡한 실정이다. 이에 본 연구에서는 ANFIS (Adaptive Neuro-Fuzzy Inference System) 기반의 댐 유입량 예측 모델을 구축하고 SRI (Standardized Runoff Index)를 활용하여 수문학적 가뭄전망을 수행하였다. 대상유역은 국내 주요 다목적댐이 위치한 충주댐 유역과 소양강댐 유역을 선정하였다. 수문 및 기상자료는 국토 교통부 및 기상청의 관측 댐 유입량, 관측 강수량, 관측 기온 및 장기기상예보 자료를 사용하였다. ANFIS 모델 구축을 위한 훈련 및 보정기간과 검정기간은 각각 1987~2010년과 2011~2016년을 선정하였다. 수문학적 가뭄전망은 지속기간 3개월의 1개월 전망 SRI3를 활용하였으며, SRI3는 관측유입량과 예측유입량을 결합하여 산정하였다. 댐 예측유입량 및 수문학적 가뭄전망의 정확도 평가를 위해 상관계수, 평균제곱근오차를 활용하였다. 댐 예측유입량 평가 결과 예측값과 관측값의 상관계수가 높게 나타났으며, 평균제곱근오차는 낮아 예측성이 뛰어났다. SRI3의 경우 관측값과 예측값의 가뭄발생시기가 유사하여 가뭄을 적절하게 반영하는 것으로 나타났다. 본 연구의 결과는 통계적 기반의 수문학적 가뭄전망기법을 개발하였다는 측면에서 의의가 있으며, 향후 물리적 기반의 가뭄전망정보와 결합한다면 보다 실효성이 향상될 것으로 기대된다.

  • PDF

Development of flash flood guidance system for rural area based on deep learning (딥러닝 기반 농촌유역 돌발홍수 예경보 시스템 개발)

  • Ryu, Jeong Hoon;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.309-309
    • /
    • 2018
  • 기후변화에 따른 강우의 규모와 발생빈도 증가로 농촌유역의 홍수 피해는 지속적으로 증가하고 있다. 하지만 우리나라의 홍수 피해 저감 대책은 도시지역의 대하천 주변으로 집중되어있으며, 소하천 및 농촌유역의 홍수 피해 저감에 대한 관리와 투자 노력은 부족한 실정이다. 특히, 최근 들어 갑작스런 집중호우 등으로 인한 농촌유역 돌발홍수 피해 사례가 증가하고 있으며, 이에 대응하기 위해서는 홍수 발생 등을 신속하게 파악하기 위한 돌발홍수 예경보 시스템 개발이 필요하다. 한편, 최근 산업의 혁신과 생산성 향상을 위한 새로운 패러다임으로 4차 산업혁명이 대두되고 있으며, 빅데이터와 인공지능 (Artificial Intelligence, AI)을 비롯하여 사물인터넷 (Internet of Things, IoT), 드론, 슈퍼컴퓨팅 등의 이른바 4차 산업혁명 기술을 활용한 연구가 수행되고 있다. 본 연구에서는 기후변화에 따른 농촌유역 홍수 피해를 저감하고 또한 사전에 대비하기 위해 빅데이터와 인공지능 등 4차 산업혁명 기술을 적용한 농촌유역 돌발홍수 예경보 시스템을 개발하고 그 적용성을 평가하고자 한다. 우선, 농촌유역의 홍수와 관련된 빅데이터 (기상 자료, 수문 자료, 기후변화 자료, 농업용 수리구조물 자료 등)를 토대로 정형 빅데이터와 비정형 빅데이터를 구분 추출하고 이를 연계 해석할 수 있는 시스템을 개발하였다. 추출한 정형 및 비정형 빅데이터를 활용하여 딥러닝을 기반으로 농촌유역의 홍수를 예측하고 홍수 예경보 기준에 따른 평가를 수행할 수 있는 시스템을 개발하였다. 과거 강우사상을 홍수 예경보 시스템에 적용하여 홍수 모의 결과를 도출하였으며, 재해연보 등과 비교 분석하여 시스템의 적용성을 분석하였다.

  • PDF

Analysis of Faculty Perceptions and Needs for the Implementation of AI based Adaptive Learning in Higher Education (대학 교육에서 인공지능 기반 적응형 학습 구현을 위한 교수자 인식 및 요구분석)

  • Shin, Jong-Ho;Shon, Jung-Eun
    • Journal of Digital Convergence
    • /
    • v.19 no.10
    • /
    • pp.39-48
    • /
    • 2021
  • This study aimed to analyze the level of professors' understanding and perception of adaptive learning and proposed how college can implement successful adaptive learning in college classes. For research purposes, online survey was conducted by 162 professors of A university in capital region. As a result, professors seemed to feel pressure to provide students personalized feedback and gave concerned that students don't study enough in advance before participating in class. It was also found that professors realized that they have low level of understanding about adaptive learning, while they revealed intention to make use of adaptive learning in their class. They also answered that adaptive learning system is the most helpful support for encouraging professors to apply adaptive learning in real class. We proposed what is required to encourage professor to implement adaptive learning in their class.

Tax Judgment Analysis and Prediction using NLP and BiLSTM (NLP와 BiLSTM을 적용한 조세 결정문의 분석과 예측)

  • Lee, Yeong-Keun;Park, Koo-Rack;Lee, Hoo-Young
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.181-188
    • /
    • 2021
  • Research and importance of legal services applied with AI so that it can be easily understood and predictable in difficult legal fields is increasing. In this study, based on the decision of the Tax Tribunal in the field of tax law, a model was built through self-learning through information collection and data processing, and the prediction results were answered to the user's query and the accuracy was verified. The proposed model collects information on tax decisions and extracts useful data through web crawling, and generates word vectors by applying Word2Vec's Fast Text algorithm to the optimized output through NLP. 11,103 cases of information were collected and classified from 2017 to 2019, and verified with 70% accuracy. It can be useful in various legal systems and prior research to be more efficient application.

A Study on Fuzzy Searching Algorithm and Conditional-GAN for Crime Prediction System (범죄예측시스템에 대한 퍼지 탐색 알고리즘과 GAN 상태에 관한 연구)

  • Afonso, Carmelita;Yun, Han-Kyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.149-160
    • /
    • 2021
  • In this study, artificial intelligence-based algorithms were proposed, which included a fuzzy search for matching suspects between current and historical crimes in order to obtain related cases in criminal history, as well as conditional generative adversarial networks for crime prediction system (CPS) using Timor-Leste as a case study. By comparing the data from the criminal records, the built algorithms transform witness descriptions in the form of sketches into realistic face images. The proposed algorithms and CPS's findings confirmed that they are useful for rapidly reducing both the time and successful duties of police officers in dealing with crimes. Since it is difficult to maintain social safety nets with inadequate human resources and budgets, the proposed implemented system would significantly assist in improving the criminal investigation process in Timor-Leste.

Clasification of Cyber Attack Group using Scikit Learn and Cyber Treat Datasets (싸이킷런과 사이버위협 데이터셋을 이용한 사이버 공격 그룹의 분류)

  • Kim, Kyungshin;Lee, Hojun;Kim, Sunghee;Kim, Byungik;Na, Wonshik;Kim, Donguk;Lee, Jeongwhan
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.165-171
    • /
    • 2018
  • The most threatening attack that has become a hot topic of recent IT security is APT Attack.. So far, there is no way to respond to APT attacks except by using artificial intelligence techniques. Here, we have implemented a machine learning algorithm for analyzing cyber threat data using machine learning method, using a data set that collects cyber attack cases using Scikit Learn, a big data machine learning framework. The result showed an attack classification accuracy close to 70%. This result can be developed into the algorithm of the security control system in the future.

Keyword Analysis of Data Technology Using Big Data Technique (빅데이터 기법을 활용한 Data Technology의 키워드 분석)

  • Park, Sung-Uk
    • Journal of Korea Technology Innovation Society
    • /
    • v.22 no.2
    • /
    • pp.265-281
    • /
    • 2019
  • With the advent of the Internet-based economy, the dramatic changes in consumption patterns have been witnessed during the last decades. The seminal change has led by Data Technology, the integrated platform of mobile, online, offline and artificial intelligence, which remained unchallenged. In this paper, I use data analysis tool (TexTom) in order to articulate the definitfite notion of data technology from Internet sources. The data source is collected for last three years (November 2015 ~ November 2018) from Google and Naver. And I have derived several key keywords related to 'Data Technology'. As a result, it was found that the key keyword technologies of Big Data, O2O (Offline-to-Online), AI, IoT (Internet of things), and cloud computing are related to Data Technology. The results of this study can be used as useful information that can be referred to when the Data Technology age comes.

Expectation and Expectation Gap towards intelligent properties of AI-based Conversational Agent (인공지능 대화형 에이전트의 지능적 속성에 대한 기대와 기대 격차)

  • Park, Hyunah;Tae, Moonyoung;Huh, Youngjin;Lee, Joonhwan
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • The purpose of this study is to investigate the users' expectation and expectation gap about the attributes of smart speaker as an intelligent agent, ie autonomy, sociality, responsiveness, activeness, time continuity, goal orientation. To this end, semi-structured interviews were conducted for smart speaker users and analyzed based on ground theory. Result has shown that people have huge expectation gap about the sociality and human-likeness of smart speakers, due to limitations in technology. The responsiveness of smart speakers was found to have positive expectation gap. For the memory of time-sequential information, there was an ambivalent expectation gap depending on the degree of information sensitivity and presentation method. We also found that there was a low expectation level for autonomous aspects of smart speakers. In addition, proactive aspects were preferred only when appropriate for the context. This study presents implications for designing a way to interact with smart speakers and managing expectations.