Abstract
In this study, artificial intelligence-based algorithms were proposed, which included a fuzzy search for matching suspects between current and historical crimes in order to obtain related cases in criminal history, as well as conditional generative adversarial networks for crime prediction system (CPS) using Timor-Leste as a case study. By comparing the data from the criminal records, the built algorithms transform witness descriptions in the form of sketches into realistic face images. The proposed algorithms and CPS's findings confirmed that they are useful for rapidly reducing both the time and successful duties of police officers in dealing with crimes. Since it is difficult to maintain social safety nets with inadequate human resources and budgets, the proposed implemented system would significantly assist in improving the criminal investigation process in Timor-Leste.
본 연구에서는 현재 발생한 범죄와 과거 유사 범죄의 기록을 조사하여 용의선상에 오른 자들과 전과자들를 비교 분석하여 범인를 예측하는 시스템을 제안한다. 제안된 시스템은 용의자들과 전과자들의 안면을 비교하기 위하여 조건부 생성 적대 네트워크를 포함하는 퍼지 매칭으로 예상 범인을 선별하는 인공 지능 기반 알고리즘 범죄 예측 시스템(CPS)입니다. 유효성을 증명하기 위하여동 티모르. 범죄 기록의 데이터를 활용하였습니다. 구축 된 알고리즘은 증언을 바탕으로 몽타쥬를 작성하여 범죄 기록상의 전과자 안면과 비교됩니다. 제안 된 알고리즘과 CPS의 결과는 범죄를 처리하는 경찰관의 시간과 노력을 최소화될 뿐만 아니라 신속한 결과를 얻었으므로 유용하다는 것을 확인했습니다. 특히, 동 티므로와 같이 부족한 인적 자원과 예산으로 사회 안전망을 유지하는 것이 어려운 국가에 제안된 시스템의 적용은 미해결 범죄의 감소와 신속한 범죄 수사에 기여할 수 있다.