• Title/Summary/Keyword: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.027 seconds

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.

Study on the Mathematics Teaching and Learning Artificial Intelligence Platform Analysis (수학 교수·학습을 위한 인공지능 플랫폼 분석 연구)

  • Park, Hye Yeon;Son, Bok Eun;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.36 no.1
    • /
    • pp.1-21
    • /
    • 2022
  • The purpose of this study is to analyze the current situation of EduTech, which is proposed as a way to build a flexible learning environment regardless of time and place according to the use of digital technology in mathematics subjects. The process of designing classes to use the EduTech platform, which is still in the development introduction stage, in public education is still difficult, and research to observe its effects and characteristics is also in its early stages. However, in the stage of preparing for future education, it is a meaningful process to grasp the current situation and point out the direction in preparation for the future in which EduTech will be actively applied to education. Accordingly, the current situation and utilization trends of EduTech at home and abroad were confirmed, and the functions and roles of EduTech platforms used in mathematics were analyzed. As a result of the analysis, the EduTech platform was pursuing learners' self-directed learning by constructing its functions so that they could be useful for individual learning of learners in hierarchical mathematics education. In addition, we have confirmed that the platform is evolving to be useful for teachers' work reduction, suitable activities, and evaluations learning management. Therefore, it is necessary to implement instructional design and individual customized learning support measures for students that can efficiently utilize these platforms in the future.

A Study on Teaching the Method of Lagrange Multipliers in the Era of Digital Transformation (라그랑주 승수법의 교수·학습에 대한 소고: 라그랑주 승수법을 활용한 주성분 분석 사례)

  • Lee, Sang-Gu;Nam, Yun;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.65-84
    • /
    • 2023
  • The method of Lagrange multipliers, one of the most fundamental algorithms for solving equality constrained optimization problems, has been widely used in basic mathematics for artificial intelligence (AI), linear algebra, optimization theory, and control theory. This method is an important tool that connects calculus and linear algebra. It is actively used in artificial intelligence algorithms including principal component analysis (PCA). Therefore, it is desired that instructors motivate students who first encounter this method in college calculus. In this paper, we provide an integrated perspective for instructors to teach the method of Lagrange multipliers effectively. First, we provide visualization materials and Python-based code, helping to understand the principle of this method. Second, we give a full explanation on the relation between Lagrange multiplier and eigenvalues of a matrix. Third, we give the proof of the first-order optimality condition, which is a fundamental of the method of Lagrange multipliers, and briefly introduce the generalized version of it in optimization. Finally, we give an example of PCA analysis on a real data. These materials can be utilized in class for teaching of the method of Lagrange multipliers.

Study on the Selection of Optimal Operation Position Using AI Techniques (인공지능 기법에 의한 최적 운항자세 선정에 관한 연구)

  • Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.681-687
    • /
    • 2023
  • The selection technique for optimal operation position selection technique is used to present the initial bow and stern draft with minimum resistance, for achievingthat is, the optimal fuel consumption efficiency at a given operating displacement and speed. The main purpose of this studypaper is to develop a program to select the optimal operating position with maximum energy efficiency under given operating conditions based on the effective power data of the target ship. This program was written as a Python-based GUI (Graphic User Interface) usingbased on artificial intelligence techniques sucho that ship owners could easily use the GUIit. In the process, tThe introduction of the target ship, the collection of effective power data through computational fluid dynamics (CFD), the learning method of the effective power model using deep learning, and the program for presenting the optimal operation position using the deep neural network (DNN) model were specifically explained. Ships are loaded and unloaded for each operation, which changes the cargo load and changes the displacement. The shipowners wants to know the optimal operating position with minimum resistance, that is, maximum energy efficiency, according to the given speed of each displacement. The developed GUI can be installed on the ship's tablet PC and application and used to determineselect the optimal operating position.

An Intelligent CCTV-Based Emergency Detection System for Rooftop Access Control Problems (옥상 출입 통제 문제 해결을 위한 지능형 CCTV 기반 비상 상황 감지 시스템 제안)

  • Yeeun Kang;Soyoung Ham;Seungchae Joa;Hani Lee;Seongmin Kim;Hakkyong Kim
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.59-68
    • /
    • 2024
  • With advancements in artificial intelligence technology, intelligent CCTV systems are being deployed across various environments, such as river bridges and construction sites. However, a conflict arises regarding the opening and closing of rooftop access points due to concerns over potential accidents and crime incidents and their role as emergency evacuation spaces. While the relevant law typically mandates the constant opening of designated rooftop access points, closures are often tacitly permitted in practice for security reasons, with a lack of appropriate legal measures. In this context, this study proposes a detection system utilizing intelligent CCTV to respond to emergencies that may occur on rooftops. We develop a system based on the YOLOv5 object detection model to detect assault and suicide attempts by jumping, introducing a new metric to assess them. Experimental results demonstrate that the proposed system rapidly detects assault and suicide attempts with high accuracy. Additionally, through a legal analysis of rooftop access point management, deficiencies in the legal framework regarding rooftop access and CCTV installation are identified, and improvement measures are proposed. With technological and legal improvements, we believe that crime and accident incidents in rooftop environments will decrease.

Automatic scoring of mathematics descriptive assessment using random forest algorithm (랜덤 포레스트 알고리즘을 활용한 수학 서술형 자동 채점)

  • Inyong Choi;Hwa Kyung Kim;In Woo Chung;Min Ho Song
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.165-186
    • /
    • 2024
  • Despite the growing attention on artificial intelligence-based automated scoring technology as a support method for the introduction of descriptive items in school environments and large-scale assessments, there is a noticeable lack of foundational research in mathematics compared to other subjects. This study developed an automated scoring model for two descriptive items in first-year middle school mathematics using the Random Forest algorithm, evaluated its performance, and explored ways to enhance this performance. The accuracy of the final models for the two items was found to be between 0.95 to 1.00 and 0.73 to 0.89, respectively, which is relatively high compared to automated scoring models in other subjects. We discovered that the strategic selection of the number of evaluation categories, taking into account the amount of data, is crucial for the effective development and performance of automated scoring models. Additionally, text preprocessing by mathematics education experts proved effective in improving both the performance and interpretability of the automated scoring model. Selecting a vectorization method that matches the characteristics of the items and data was identified as one way to enhance model performance. Furthermore, we confirmed that oversampling is a useful method to supplement performance in situations where practical limitations hinder balanced data collection. To enhance educational utility, further research is needed on how to utilize feature importance derived from the Random Forest-based automated scoring model to generate useful information for teaching and learning, such as feedback. This study is significant as foundational research in the field of mathematics descriptive automatic scoring, and there is a need for various subsequent studies through close collaboration between AI experts and math education experts.

Development and Application of a Scenario Analysis System for CBRN Hazard Prediction (화생방 오염확산 시나리오 분석 시스템 구축 및 활용)

  • Byungheon Lee;Jiyun Seo;Hyunwoo Nam
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.3
    • /
    • pp.13-26
    • /
    • 2024
  • The CBRN(Chemical, Biological, Radiological, and Nuclear) hazard prediction model is a system that supports commanders in making better decisions by creating contamination distribution and damage prediction areas based on the weapons used, terrain, and weather information in the events of biochemical and radiological accidents. NBC_RAMS(Nuclear, Biological and Chemical Reporting And Modeling S/W System) developed by ADD (Agency for Defense Development) is used not only supporting for decision making plan for various military operations and exercises but also for post analyzing CBRN related events. With the NBC_RAMS's core engine, we introduced a CBR hazard assessment scenario analysis system that can generate contaminant distribution prediction results reflecting various CBR scenarios, and described how to apply it in specific purposes in terms of input information, meteorological data, land data with land coverage and DEM, and building data with pologon form. As a practical use case, a technology development case is addressed that tracks the origin location of contaminant source with artificial intelligence and a technology that selects the optimal location of a CBR detection sensor with score data by analyzing large amounts of data generated using the CBRN scenario analysis system. Through this system, it is possible to generate AI-specialized CBRN related to training and analysis data and support planning of operation and exercise by predicting battle field.

Analysis of Emerging Geo-technologies and Markets Focusing on Digital Twin and Environmental Monitoring in Response to Digital and Green New Deal (디지털 트윈, 환경 모니터링 등 디지털·그린 뉴딜 정책 관련 지질자원 유망기술·시장 분석)

  • Ahn, Eun-Young;Lee, Jaewook;Bae, Junhee;Kim, Jung-Min
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.609-617
    • /
    • 2020
  • After introducing the industry 4.0 policy, Korean government announced 'Digital New Deal' and 'Green New Deal' as 'Korean New Deal' in 2020. We analyzed Korea Institute of Geoscience and Mineral Resources (KIGAM)'s research projects related to that policy and conducted markets analysis focused on Digital Twin and environmental monitoring technologies. Regarding 'Data Dam' policy, we suggested the digital geo-contents with Augmented Reality (AR) & Virtual Reality (VR) and the public geo-data collection & sharing system. It is necessary to expand and support the smart mining and digital oil fields research for '5th generation mobile communication (5G) and artificial intelligence (AI) convergence into all industries' policy. Korean government is suggesting downtown 3D maps for 'Digital Twin' policy. KIGAM can provide 3D geological maps and Internet of Things (IoT) systems for social overhead capital (SOC) management. 'Green New Deal' proposed developing technologies for green industries including resource circulation, Carbon Capture Utilization and Storage (CCUS), and electric & hydrogen vehicles. KIGAM has carried out related research projects and currently conducts research on domestic energy storage minerals. Oil and gas industries are presented as representative applications of digital twin. Many progress is made in mining automation and digital mapping and Digital Twin Earth (DTE) is a emerging research subject. The emerging research subjects are deeply related to data analysis, simulation, AI, and the IoT, therefore KIGAM should collaborate with sensors and computing software & system companies.

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF

The Role of Home Economics Education in the Fourth Industrial Revolution (4차 산업혁명시대 가정과교육의 역할)

  • Lee, Eun-hee
    • Journal of Korean Home Economics Education Association
    • /
    • v.31 no.4
    • /
    • pp.149-161
    • /
    • 2019
  • At present, we are at the point of change of the 4th industrial revolution era due to the development of artificial intelligence(AI) and rapid technological innovation that no one can predict until now. This study started from the question of 'What role should home economics education play in the era of the Fourth Industrial Revolution?'. The Fourth Industrial Revolution is characterized by AI, cloud computing, Internet of Things(IoT), big data, and Online to Offline(O2O). It will drastically change the social system, science and technology and the structure of the profession. Since the dehumanization of robots and artificial intelligence may occur, the 4th Industrial Revolution Education should be sought to foster future human resources with humanity and citizenship for the future community. In addition, the implication of education in the fourth industrial revolution, which will bring about a change to a super-intelligent and hyper-connected society, is that the role of education should be emphasized so that humans internalize their values as human beings. Character education should be established as a generalized and internalized consciousness with a concept established in the integration of the curriculum, and concrete practical strategies should be prepared. In conclusion, home economics education in the 4th industrial revolution era should play a leading role in the central role of character education, and intrinsic improvement of various human lives. The fourth industrial revolution will change not only what we do, or human mental and physical activities, but also who we are, or human identity. In the information society and digital society, it is important how quickly and accurately it is possible to acquire scattered knowledge. In the information society, it is required to learn how to use knowledge for human beings in rapid change. As such, the fourth industrial revolution seeks to lead the family, organization, and community positively by influencing the systems that shape our lives. Home economics education should take the lead in this role.