• Title/Summary/Keyword: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.03 seconds

A Study on Image Annotation Automation Process using SHAP for Defect Detection (SHAP를 이용한 이미지 어노테이션 자동화 프로세스 연구)

  • Jin Hyeong Jung;Hyun Su Sim;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.76-83
    • /
    • 2023
  • Recently, the development of computer vision with deep learning has made object detection using images applicable to diverse fields, such as medical care, manufacturing, and transportation. The manufacturing industry is saving time and money by applying computer vision technology to detect defects or issues that may occur during the manufacturing and inspection process. Annotations of collected images and their location information are required for computer vision technology. However, manually labeling large amounts of images is time-consuming, expensive, and can vary among workers, which may affect annotation quality and cause inaccurate performance. This paper proposes a process that can automatically collect annotations and location information for images using eXplainable AI, without manual annotation. If applied to the manufacturing industry, this process is thought to save the time and cost required for image annotation collection and collect relatively high-quality annotation information.

Study of an AI Model for Airfoil Parameterization and Aerodynamic Coefficient Prediction from Image Data (이미지 데이터를 이용한 익형 매개변수화 및 공력계수 예측을 위한 인공지능 모델 연구)

  • Seung Hun Lee;Bo Ra Kim;Jeong Hun Lee;Joon Young Kim;Min Yoon
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The shape of an airfoil is a critical factor in determining aerodynamic characteristics such as lift and drag. Aerodynamic properties of an airfoil have a decisive impact on the performance of various engineering applications, including airplane wings and wind turbine blades. Therefore, it is essential to analyze the aerodynamic characteristics of airfoils. Various analytical tools such as experiments, computational fluid dynamics, and Xfoil are used to perform these analyses, but each tool has its limitation. In this study, airfoil parameterization, image recognition, and artificial intelligence are combined to overcome these limitations. Image and coordinate data are collected from the UIUC airfoil database. Airfoil parameterization is performed by recognizing images from image data to build a database for deep learning. Trained model can predict the aerodynamic characteristics not only of airfoil images but also of sketches. The mean absolute error of untrained data is 0.0091.

Development and Application of Using SW Education Program for Non-Informatics Teachers on SW Education Teaching Specialization (비 정보과 교사의 소프트웨어 교육 수업 전문성 향상을 위한 연수 프로그램 개발 및 적용)

  • Hwang, Ji-Yeon;Lee, Dagyeom;Lee, Youngjun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.389-390
    • /
    • 2022
  • 4차 산업혁명이 도래하여 사회 전반에서 혁신적인 변화가 일어났다. 이에 따라 2022 개정 교육과정에서는 미래 사회가 요구하는 소양 및 역량 강화를 위하여 인공지능(Artificial Intelligence, AI)·소프트웨어(Software, SW)교육을 비롯한 디지털 기초 소양을 강화하는 것을 개정의 중점으로 설정하였다. 이처럼 SW교육은 정보 관련 교과를 비롯한 타 교과에서도 중요하며 따라서 비 정보과 교사도 SW관련 교육 내용을 이해해야 할 필요가 있다. 본 연구에서는 비 정보과 교사에게 SW연수를 실시하였고, SW교육 수업 전문성의 변화를 살펴보았다. 그 결과 사전 검사에 비해 사후 검사 결과에서 통계적으로 유의한 상승을 확인하였다. 이는 SW연수가 비 정보과 교사의 SW교육 수업 전문성 함양에 긍정적인 영향을 준다는 것을 의미한다. 그러나 본 연구는 단일집단으로 이루어진 실험을 설계하여 실시하였으므로, 이러한 변화가 처치로 인한 것인지 확인할 수 없다는 한계점이 있다. 그러므로 통제 집단 및 실험 집단 선별 과정을 거친 후속 연구 설계가 요구된다.

  • PDF

The Study on the Quality Assessment Model of Aircraft Voice Recognition Software (항공기 음성인식 소프트웨어 품질 평가 모델 연구)

  • Lee, Seung-Mok
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.73-83
    • /
    • 2019
  • Voice Recognition has recently been improved with AI(Artificial Intelligence) and has greatly improved the false recognition rate and provides an effective and efficient Human Machine Interface (HMI). This trend has also been applied in the defense industry, particularly in the aviation, F-35. However, for the quality evaluation of Voice Recognition, the defense industry, especially the aircraft, requires measurable quantitative models. In this paper, the quantitative evaluation model is proposed for applying Voice Recognition to aircraft. For the proposal, the evaluation items are identified from the Voice Recognition technology and ISO/IEC 25000(SQuaRE) quality attributes. Using these two perspectives, the quantitative evaluation model is proposed under aircraft operation condition and confirms the evaluation results.

Development of Career Exploration Program for Student Athletes : Focusing on Artificial Intelligence and Big Data Fields (운동선수부 학생을 위한 진로탐구 프로그램 개발 : 인공지능과 빅데이터 분야를 중심으로)

  • Kangsoo You
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.401-408
    • /
    • 2023
  • In this study, a career exploration program was developed for athletic students. Therefore, existing research on career exploration for athletics was analyzed, requirements were identified, and a learning plan was designed. Based on this, a step-by-step educational program was developed. In addition, since research on career exploration for athletic students was not active in previous studies, 'problem definition' - 'data collection' - 'data preprocessing' - 'data analysis' by referring to existing career exploration studies that were studied in the school field. - 'Data visualization' - 'Simulation analysis' were divided into stages to conduct the study. Through this study, it is expected that research on vocational education for athletic students will be more active.

Proposal of Makeup's Function on the Metaverse Digital Platform - Focusing on Zepeto - (메타버스 디지털 플랫폼의 메이크업 기능 제안 - 제페토를 중심으로 -)

  • Se Mi Nam;Eun Sil Kim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.739-744
    • /
    • 2023
  • With the popularization of 5G networks and the development of AI (artificial intelligence) technology, Metaverse, which creates production capacity by combining virtual space and reality, is attracting attention. In this study, we searched for makeup applications with more than 100 million downloads from October 11, 2020 to November 3, 2020 through the Google Play Store. As a result of the search, four applications were found: YouCam Makeup, YouCam Perfect, Beauty Plus, and Sweet Snap. Based on the functions provided by the four applications, we attempted to suggest makeup functions applicable to Zepeto's avatar. Functions for the eyes (eyeliner, eyelashes, mascara, eye shadow, eye shape, eyebrow shape, lenses, double eyelids), functions for the nose (nose shape), functions for the mouth (lipstick, lip shape, smile function) ) Functions corresponding to the facial contour (contour, skin foundation, blusher, shading, highlighter, face painting, theme makeup) and functions corresponding to the body (body adjustment) were proposed. This study is the first in the beauty field to propose a method of applying the functions of the Metaverse platform as the importance of digital platforms is highlighted, and is the first to propose a makeup function applied to the Metaverse so that it can be used as important basic data in the future.

ICLAL: In-Context Learning-Based Audio-Language Multi-Modal Deep Learning Models (ICLAL: 인 컨텍스트 러닝 기반 오디오-언어 멀티 모달 딥러닝 모델)

  • Jun Yeong Park;Jinyoung Yeo;Go-Eun Lee;Chang Hwan Choi;Sang-Il Choi
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.514-517
    • /
    • 2023
  • 본 연구는 인 컨택스트 러닝 (In-Context Learning)을 오디오-언어 작업에 적용하기 위한 멀티모달 (Multi-Modal) 딥러닝 모델을 다룬다. 해당 모델을 통해 학습 단계에서 오디오와 텍스트의 소통 가능한 형태의 표현 (Representation)을 학습하고 여러가지 오디오-텍스트 작업을 수행할 수 있는 멀티모달 딥러닝 모델을 개발하는 것이 본 연구의 목적이다. 모델은 오디오 인코더와 언어 인코더가 연결된 구조를 가지고 있으며, 언어 모델은 6.7B, 30B 의 파라미터 수를 가진 자동회귀 (Autoregressive) 대형 언어 모델 (Large Language Model)을 사용한다 오디오 인코더는 자기지도학습 (Self-Supervised Learning)을 기반으로 사전학습 된 오디오 특징 추출 모델이다. 언어모델이 상대적으로 대용량이기 언어모델의 파라미터를 고정하고 오디오 인코더의 파라미터만 업데이트하는 프로즌 (Frozen) 방법으로 학습한다. 학습을 위한 과제는 음성인식 (Automatic Speech Recognition)과 요약 (Abstractive Summarization) 이다. 학습을 마친 후 질의응답 (Question Answering) 작업으로 테스트를 진행했다. 그 결과, 정답 문장을 생성하기 위해서는 추가적인 학습이 필요한 것으로 보였으나, 음성인식으로 사전학습 한 모델의 경우 정답과 유사한 키워드를 사용하는 문법적으로 올바른 문장을 생성함을 확인했다.

Traditional Circular Economy vs Integrated Blockchain Technology in the Coffee Supply Chain: A Comparative Study (커피 공급망의 전통적 순환경제 vs 통합적 블록체인 기술 비교 연구)

  • Cho Nwe Zin Latt;Igugu Tshisekedi Etienne;Muhammad Firdaus;Kyung-hyune Rhee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.264-267
    • /
    • 2023
  • The circular economy approach in the coffee supply chain promotes a more sustainable, environmentally friendly, and socially responsible coffee industry. It aims to reduce the environmental impact of coffee production and consumption while ensuring the long-term viability of coffee farming communities and ecosystems. However, there are many challenges in the traditional circular economy coffee supply chain. Hence, this paper undertakes a comparative analysis between the traditional circular economy coffee supply chain and its integration with blockchain. As a result, we display the benefits of incorporating blockchain technology into the conventional circular economy framework of the coffee supply chain. Additionally, this integration promises to overcome the challenges in the traditional circular economy coffee supply chain.

Developing the Deep Text-to-Ontology Generator based on Neuro-Symbolic Architecture (뉴로-심볼릭 구조 기반 온톨로지 생성기 제안)

  • Hyeoung-Cheol Park;Eun-Su Yun;Min-Jeong Kim;Hui-Jae Bae;Yu-Jin Shin;Jee-Hang Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.672-674
    • /
    • 2023
  • 본 논문은 뉴로-심볼릭 구조를 바탕으로 일반 텍스트로부터 온톨로지 생성이 가능한 심층 신경망 기반 온톨로지 추출기를 제안한다. 온톨로지 추출 단계를 (i) 온톨로지 학습 및 (ii) 온톨로지 생성의 2 단계로 상정, (i) 일반 텍스트로부터 문장 구조 및 논리적 관계를 학습하는 트랜스포머 기반 심층 생성 신경망 출력을 이용하여 (ii) 계층적으로 결합한 심볼릭 추론기로 온톨로지를 생성하는 뉴로-심볼릭 구조 온톨로지 추출기를 구현하였다. 1800 개 훈련 집합으로 학습 후 200 개 테스트 집합으로 평가한 결과, 정확도 91.9%, Precision 100%, Recall 99.1%로 비교 모델 OpenIE 의 성능에 비해서 각각 83.8%, 1.8%, 3.5% 개선된 것을 확인하였다. 정성적 품질에 있어서, 복잡한 문장 (예: 관계대명사, 접속사, 중첩 구조)에서도 비교 모델에 비해 더 정밀한 온톨로지 생성 결과를 보였다.

Smart Aquaculture Industrialization Model and Technology Development Direction Considering Technology, Economy and Environment (기술·경제·환경적 측면에서의 스마트양식 산업화 모델과 기술개발 방향)

  • Donggil Lee;Hae Seung Jeong;Junhyuk Seo;Hyeong Su Kim;Jeonghwan Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.759-765
    • /
    • 2023
  • Owing to the increase in the elderly population at aquaculture farm and decrease in the number of aquaculture farmers, the need to improve aquaculture production system is increasing. In addition, asvirtual interactions become new normal after COVID-19 pandemic, the speed at which science and technology such as the internet of things (IoT), information and communications technology (ICT), and artificial intelligence (AI) are applied to each field is accelerating. Efforts are being made to enhance the quality of life of aquaculture farmer and competitiveness of the aquaculture industry by incorporating digital technology. This study analyzed national and global aquaculture technology development and policy trends, smart aquaculture terminology application scenarios, and prior research cases to propose smart aquaculture industrialization models and technology development directions considering technology, economy, and environment. This study can also provide valuable reference for promoting smart and efficient development of aquaculture.