• Title/Summary/Keyword: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.032 seconds

Shoe Recommendation System by Measurement of Foot Shape Imag

  • Chang Bae Moon;Byeong Man Kim;Young-Jin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.93-104
    • /
    • 2023
  • In modern society, the service method is tended to prefer the non-face-to-face method rather than the face-to-face method. However, services that recommend products such as shoes will inevitably be face-to-face method. In this paper, for the purpose of non-face-to-face service, a system that a foot size is automatically measured and some shoes are recommended based on the measurement result is proposed. To analyze the performance of the proposed method, size measurement error rate and recommendation performance were analyzed. In the recommendation performance experiments, a total of 10 methods for similarity calculation were used and the recommendation method with the best performance among them was applied to the system. From the experiments, the error rate the foot size was small and the recommendation performance was possible to derive significant results. The proposed method is at the laboratory level and needs to be expanded and applied to the real environment. Also, the recommendation method considering design could be needed in the future work.

Physics informed neural networks for surrogate modeling of accidental scenarios in nuclear power plants

  • Federico Antonello;Jacopo Buongiorno;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3409-3416
    • /
    • 2023
  • Licensing the next-generation of nuclear reactor designs requires extensive use of Modeling and Simulation (M&S) to investigate system response to many operational conditions, identify possible accidental scenarios and predict their evolution to undesirable consequences that are to be prevented or mitigated via the deployment of adequate safety barriers. Deep Learning (DL) and Artificial Intelligence (AI) can support M&S computationally by providing surrogates of the complex multi-physics high-fidelity models used for design. However, DL and AI are, generally, low-fidelity 'black-box' models that do not assure any structure based on physical laws and constraints, and may, thus, lack interpretability and accuracy of the results. This poses limitations on their credibility and doubts about their adoption for the safety assessment and licensing of novel reactor designs. In this regard, Physics Informed Neural Networks (PINNs) are receiving growing attention for their ability to integrate fundamental physics laws and domain knowledge in the neural networks, thus assuring credible generalization capabilities and credible predictions. This paper presents the use of PINNs as surrogate models for accidental scenarios simulation in Nuclear Power Plants (NPPs). A case study of a Loss of Heat Sink (LOHS) accidental scenario in a Nuclear Battery (NB), a unique class of transportable, plug-and-play microreactors, is considered. A PINN is developed and compared with a Deep Neural Network (DNN). The results show the advantages of PINNs in providing accurate solutions, avoiding overfitting, underfitting and intrinsically ensuring physics-consistent results.

Improving the Security Policy Based on Data Value for Defense Innovation with Science and Technology (과학기술 중심 국방혁신을 위한 데이터 가치 기반 보안정책 발전 방향)

  • Heungsoon Park
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.109-115
    • /
    • 2023
  • The future outlook for defense faces various and challenging environments such as the acceleration of uncertainty in the global security landscape and limitations in domestic social and economic conditions. In response, the Ministry of National Defense seeks to address the problems and threats through defense innovation based on scientific and technological advancements such as artificial intelligence, drones, and robots. To introduce advanced AI-based technology, it is essential to integrate and utilize data on IT environments such as cloud and 5G. However, existing traditional security policies face difficulties in data sharing and utilization due to mainly system-oriented security policies and uniform security measures. This study proposes a paradigm shift to a data value-based security policy based on theoretical background on data valuation and life-cycle management. Through this, it is expected to facilitate the implementation of scientific and technological innovations for national defense based on data-based task activation and new technology introduction.

A Dynamic Web Service Orchestration and Invocation Scheme based on Aspect-Oriented Programming and Reflection (관점지향 프로그래밍 및 리플렉션 기반의 동적 웹 서비스 조합 및 실행 기법)

  • Lim, Eun-Cheon;Sim, Chun-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.1-10
    • /
    • 2009
  • The field of the web service orchestration introduced to generate a valuable service by reusing single services. Recently, it suggests rule-based searching and composition by the AI (Artificial Intelligence) instead of simple searching or orchestration based on the IOPE(Input, Output, Precondition, Effect) to implement the Semantic web as the web service of the next generation. It introduce a AOP programming paradigm from existing object-oriented programming paradigm for more efficient modularization of software. In this paper, we design a dynamic web service orchestration and invocation scheme applying Aspect-Oriented Programming (AOP) and Reflection for Semantic web. The proposed scheme makes use of the Reflection technique to gather dynamically meta data and generates byte code by AOP to compose dynamically web services. As well as, our scheme shows how to execute composed web services through dynamic proxy objects generated by the Reflection. For performance evaluation of the proposed scheme, we experiment on search performance of composed web services with respect to business logic layer and user view layer.

AI-based incident handling using a black box (블랙박스를 활용한 AI 기반 사고처리)

  • Park, Gi-Won;Lee, Geon-woo;Yu, Junhyeok;Kim, Shin-Hyoung
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1188-1191
    • /
    • 2021
  • The function of the black box can be combined with a car to check the video through a cloud server, reduce the hassle of checking the video through a memory card, check the black box image in real time through a PC and smartphone, and check the user's Excel, brake operation status, and handle control record at the time of the accident. In addition, the goal was to accurately identify vehicle accidents and simplify accident handling through artificial intelligence object recognition of black box images using cloud services. Measures can be prepared to preserve images even if the black box itself loses, such as fire, flooding, or damage that occurs in an accident. It has been confirmed that the exact situation before and after the accident can be grasped immediately by providing object recognition and log recording functions under actual driving experimental conditions.

Development of Plant Engineering Analysis Platform using Knowledge Base (지식베이스를 이용한 플랜트 엔지니어링 분석 플랫폼 개발)

  • Young-Dong Ko;Hyun-Soo Kim
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Engineering's work area for plants is a technical area that directly affects productivity, performance, and quality throughout the lifecycle from planning, design, construction, operation and disposal. Using the different types of data that occur to make decisions is important not only in the subsequent process but also in terms of cyclical cost reduction. However, there is a lack of systems to manage and analyze these integrated data. In this paper, we developed a knowledge base-based plant engineering analysis platform that can manage and utilize data. The platform provides a knowledge base that preprocesses previously collected engineering data, and provides analysis and visualization to use it as reference data in AI models. Users can perform data analysis through the use of prior technology and accumulated knowledge through the platform and use visualization in decision-support and systematically manage construction that relied only on experience.

Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP (리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석)

  • Boram Kang;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • The tourism industry is facing a crisis due to the recent COVID-19 pandemic, and it is vital to improving profitability to overcome it. In situations such as COVID-19, it would be more efficient to sell additional products other than guest rooms to customers who have visited to increase the unit price rather than adopting an aggressive sales strategy to increase room occupancy to increase profits. Previous tourism studies have used machine learning techniques for demand forecasting, but there have been few studies on cross-selling forecasting. Also, in a broader sense, a resort is the same accommodation industry as a hotel. However, there is no study specialized in the resort industry, which is operated based on a membership system and has facilities suitable for lodging and cooking. Therefore, in this study, we propose a cross-selling prediction model using various machine learning techniques with an actual resort company's accommodation data. In addition, by applying the explainable artificial intelligence XAI(eXplainable AI) technique, we intend to interpret what factors affect cross-selling and confirm how they affect cross-selling through empirical analysis.

A Study on the Implementation of Real-Time Marine Deposited Waste Detection AI System and Performance Improvement Method by Data Screening and Class Segmentation (데이터 선별 및 클래스 세분화를 적용한 실시간 해양 침적 쓰레기 감지 AI 시스템 구현과 성능 개선 방법 연구)

  • Wang, Tae-su;Oh, Seyeong;Lee, Hyun-seo;Choi, Donggyu;Jang, Jongwook;Kim, Minyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.571-580
    • /
    • 2022
  • Marine deposited waste is a major cause of problems such as a lot of damage and an increase in the estimated amount of garbage due to abandoned fishing grounds caused by ghost fishing. In this paper, we implement a real-time marine deposited waste detection artificial intelligence system to understand the actual conditions of waste fishing gear usage, distribution, loss, and recovery, and study methods for performance improvement. The system was implemented using the yolov5 model, which is an excellent performance model for real-time object detection, and the 'data screening process' and 'class segmentation' method of learning data were applied as performance improvement methods. In conclusion, the object detection results of datasets that do screen unnecessary data or do not subdivide similar items according to characteristics and uses are better than the object recognition results of unscreened datasets and datasets in which classes are subdivided.

A Study on the Improvement of the Efficiency of School Report Documentation Using Artificial Intelligence Technology in Natural Language Processing (자연어 처리 인공지능 기술을 활용한 생활기록부 작성 효율성 제고 향상 연구)

  • Seo, Jung-Ho;Kim, Woong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.409-412
    • /
    • 2022
  • 본 논문에서는 대입수시전형에서 생활기록부 입력은 대한민국 입시를 결정하는 매우 중요한 평가자료이다. 30명의 교사를 대상으로 실시한 설문조사를 통해서 교사들이 생활기록부를 작성하는데 가장 많이 참고하는 자료로는 수행평가 결과물, 발표내용, 보고서, 감상문 등의 학습 결과물(90%), 학생들이 작성한 자기평가서(73.3%), 관찰 평가지(50%)로 나타났으며, 80%(24명)의 교사들이 생활기록부를 작성하는데 고충을 겪고 있음을 확인할 수 있었다. 교사들이 느끼는 고충의 원인으로는 학생들의 개인별 특성 파악이 어려워 차별성있게 작성하는 것(76.7%)을 가장 힘들어 하였고, 작성해야 할 많은 수의 학생(60%), 문구를 만드는데 대해 부담(86.7%)을 느끼는 것으로 나타났다. 이 과정에서 교사의 전문성 뿐만 아니라 기계적이고 반복적인 작업도 많이 요구되고 있기 때문에, 생활기록부를 작성하는데에 도움을 줄 수 있는 프로그램 개발이 필요하다고 고안을 내었다. 교사들 역시 반복적이고 일률적인 생활기록부 작성에 도움을 줄 수 있는 프로그램이 있다면 유용하게 활용할 것이라는 응답이 90%였다. 따라서 본 연구에서 자연어 처리 인공지능 기술을 활용하여 교사들이 생활기록부를 작성하는데 있어 기계적이고 단순한 작업을 도와 주는 프로그램 개발에 대한 연구의 필요성을 제시하였다. 제안하는 프로그램은 학생들의 탐구보고서, 토론, 발표, 감상문 등의 생화기록부 작성 참고자료들을 텍스트로 변환하고 추상요약(Abstractive Summarization)을 통해 교사들이 효율적으로 작성하는데 활용될 수 있도록 설계하였다. 연구 결과 생활기록부 작성 참고자료를 텍스트로 변환하는 것과 추상요약을 할 수 있는 개방형 데이터셋까지는 확보하였다. 추상요약을 구현하는 방법에 대해서는 보다 심도 있는 추가연구가 필요하였다. 이를 통해 교사들이 교육 본질에 더욱 충실할 수 있는 환경을 마련하고, 내실 있는 생활기록부 작성이 공교육 신뢰 제고에 밑바탕이 되고자 한다.

  • PDF

ChatGPT and Research Ethics (ChatGPT와 연구윤리)

  • Wha-Chul Son
    • Knowledge Management Research
    • /
    • v.24 no.3
    • /
    • pp.1-15
    • /
    • 2023
  • This paper examines research ethics in using the generative AI ChatGPT for research purposes. After reviewing traditional themes of research ethics and relevant principles, it will be argued to be inappropriate to discuss ChatGPT-related issues only from the perspective of permission, detection, and punishment. We need to consider the fundamental problem that the current rules pose concerning the way ChatGPT works. This leads to the proposal that the usage of ChatGPT should be clearly noted when it is used for research purposes and that some unresolved issues should be recognized. Although the advantages of ChatGPT cannot be denied, consensus on the appropriate scope of use is needed from perspectives of the research community and researcher's social responsibility. As generative artificial intelligence technologies are still in the early stages of development, researchers should pay attention to relevant research ethical issues, while not making hasty conclusions. In the conclusion, it will be also proposed to discuss and make a consensus regarding the definition of research that is premised on existing research ethics, but challenged with the advent of ChatGPT and AI technology.