• Title/Summary/Keyword: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.032 seconds

Concurrent Detection for Vehicles and Lanes Using Light-Weight Model of Multi-Task CNN (멀티 테스크 CNN의 경량화 모델을 이용한 차량 및 차선의 동시 검출)

  • Shin, Hyeon-Sik;Kim, Hyung-Won;Hong, Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.367-373
    • /
    • 2022
  • As deep learning-based autonomous driving technology develops, artificial intelligence models for various purposes have been studied. Based on these studies, several models were used simultaneously to develop autonomous driving systems. It can occur by increasing hardware resource consumption. We propose a multi-tasks model using a shared backbone to solve this problem. This can solve the increase in the number of backbones for using AI models. As a result, in the proposed lightweight model, the model parameters could be reduced by more than 50% compared to the existing model, and the speed could be improved. In addition, each lane can be classified through lane detection using the instance segmentation method. However, further research is needed on the decrease in accuracy compared to the existing model.

A Study on Use Case Analysis and Adoption of NLP: Analysis Framework and Implications (NLP 활용 사례 분석 및 도입에 관한 연구: 분석 프레임워크와 시사점)

  • Park, Hyunjung;Lim, Heuiseok
    • Journal of Information Technology Services
    • /
    • v.21 no.2
    • /
    • pp.61-84
    • /
    • 2022
  • With the recent application of deep learning to Natural Language Processing (NLP), the performance of NLP has improved significantly and NLP is emerging as a core competency of organizations. However, when encountering NLP use cases that are sporadically reported through various online and offline channels, it is often difficult to come up with a big picture of how to understand and interpret them or how to connect them to business. This study presents a framework for systematically analyzing NLP use cases, considering the characteristics of NLP techniques applicable to almost all industries and business functions, environmental changes in the era of the Fourth Industrial Revolution, and the effectiveness of adopting NLP reflecting all business functional areas. Through solving research questions based on the framework, the usefulness of it is validated. First, by accumulating NLP use cases and pivoting them around the business function dimension, we derive how NLP techniques are used in each business functional area. Next, by synthesizing related surveys and reports to the accumulated use cases, we draw implications for each business function and major NLP techniques. This work promotes the creation of innovative business scenarios and provides multilateral implications for the adoption of NLP by systematically viewing NLP techniques, industries, and business functional areas. The use case analysis framework proposed in this study presents a new perspective for research on new technology use cases. It also helps explore strategies that can dramatically improve organizational performance through a holistic approach that encompasses all business functional areas.

Emotion-based Real-time Facial Expression Matching Dialogue System for Virtual Human (감정에 기반한 가상인간의 대화 및 표정 실시간 생성 시스템 구현)

  • Kim, Kirak;Yeon, Heeyeon;Eun, Taeyoung;Jung, Moonryul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • Virtual humans are implemented with dedicated modeling tools like Unity 3D Engine in virtual space (virtual reality, mixed reality, metaverse, etc.). Various human modeling tools have been introduced to implement virtual human-like appearance, voice, expression, and behavior similar to real people, and virtual humans implemented via these tools can communicate with users to some extent. However, most of the virtual humans so far have stayed unimodal using only text or speech. As AI technologies advance, the outdated machine-centered dialogue system is now changing to a human-centered, natural multi-modal system. By using several pre-trained networks, we implemented an emotion-based multi-modal dialogue system, which generates human-like utterances and displays appropriate facial expressions in real-time.

Research on Data Tuning Methods to Improve the Anomaly Detection Performance of Industrial Control Systems (산업제어시스템의 이상 탐지 성능 개선을 위한 데이터 보정 방안 연구)

  • JUN, SANGSO;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.4
    • /
    • pp.691-708
    • /
    • 2022
  • As the technology of machine learning and deep learning became common, it began to be applied to research on anomaly(abnormal) detection of industrial control systems. In Korea, the HAI dataset was developed and published to activate artificial intelligence research for abnormal detection of industrial control systems, and an AI contest for detecting industrial control system security threats is being conducted. Most of the anomaly detection studies have been to create a learning model with improved performance through the ensemble model method, which is applied either by modifying the existing deep learning algorithm or by applying it together with other algorithms. In this study, a study was conducted to improve the performance of anomaly detection with a post-processing method that detects abnormal data and corrects the labeling results, rather than the learning algorithm and data pre-processing process. Results It was confirmed that the results were improved by about 10% or more compared to the anomaly detection performance of the existing model.

Developing a Learning Model based on Computational Thinking (컴퓨팅 사고기반 융합 수업모델 개발)

  • Yu, Jeong-Su;Jang, Yong-Woo
    • Journal of Industrial Convergence
    • /
    • v.20 no.2
    • /
    • pp.29-36
    • /
    • 2022
  • Computational thinking in the AI and Big Data era for digital society means a series of problem-solving methods that involve expressing problems and their solutions in ways that computers can execute. Computational thinking is an approach to solving problems, designing systems, and understanding human behavior by deriving basic concepts in computer science, and solving difficult problems and elusive puzzles for students. We recently studied 93 pre-service teachers who are currently a freshman at ◯◯ university. The results of the first semester class, the participants created a satisfactory algorithm of the video level. Also, the proposed model was found to contribute greatly to the understanding of the computational thinking of the students participating in the class.

Use of deep learning in nano image processing through the CNN model

  • Xing, Lumin;Liu, Wenjian;Liu, Xiaoliang;Li, Xin;Wang, Han
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.185-195
    • /
    • 2022
  • Deep learning is another field of artificial intelligence (AI) utilized for computer aided diagnosis (CAD) and image processing in scientific research. Considering numerous mechanical repetitive tasks, reading image slices need time and improper with geographical limits, so the counting of image information is hard due to its strong subjectivity that raise the error ratio in misdiagnosis. Regarding the highest mortality rate of Lung cancer, there is a need for biopsy for determining its class for additional treatment. Deep learning has recently given strong tools in diagnose of lung cancer and making therapeutic regimen. However, identifying the pathological lung cancer's class by CT images in beginning phase because of the absence of powerful AI models and public training data set is difficult. Convolutional Neural Network (CNN) was proposed with its essential function in recognizing the pathological CT images. 472 patients subjected to staging FDG-PET/CT were selected in 2 months prior to surgery or biopsy. CNN was developed and showed the accuracy of 87%, 69%, and 69% in training, validation, and test sets, respectively, for T1-T2 and T3-T4 lung cancer classification. Subsequently, CNN (or deep learning) could improve the CT images' data set, indicating that the application of classifiers is adequate to accomplish better exactness in distinguishing pathological CT images that performs better than few deep learning models, such as ResNet-34, Alex Net, and Dense Net with or without Soft max weights.

Applying a Novel Neuroscience Mining (NSM) Method to fNIRS Dataset for Predicting the Business Problem Solving Creativity: Emphasis on Combining CNN, BiLSTM, and Attention Network

  • Kim, Kyu Sung;Kim, Min Gyeong;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.1-7
    • /
    • 2022
  • With the development of artificial intelligence, efforts to incorporate neuroscience mining with AI have increased. Neuroscience mining, also known as NSM, expands on this concept by combining computational neuroscience and business analytics. Using fNIRS (functional near-infrared spectroscopy)-based experiment dataset, we have investigated the potential of NSM in the context of the BPSC (business problem-solving creativity) prediction. Although BPSC is regarded as an essential business differentiator and a difficult cognitive resource to imitate, measuring it is a challenging task. In the context of NSM, appropriate methods for assessing and predicting BPSC are still in their infancy. In this sense, we propose a novel NSM method that systematically combines CNN, BiLSTM, and attention network for the sake of enhancing the BPSC prediction performance significantly. We utilized a dataset containing over 150 thousand fNIRS-measured data points to evaluate the validity of our proposed NSM method. Empirical evidence demonstrates that the proposed NSM method reveals the most robust performance when compared to benchmarking methods.

Analysis of Academic Achievement Data Using AI Cluster Algorithms (AI 군집 알고리즘을 활용한 학업 성취도 데이터 분석)

  • Koo, Dukhoi;Jung, Soyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.1005-1013
    • /
    • 2021
  • With the prolonged COVID-19, the existing academic gap is widening. The purpose of this study is to provide homeroom teachers with a visual confirmation of the academic achievement gap in grades and classrooms through academic achievement analysis, and to use this to help them design lessons and explore ways to improve the academic achievement gap. The data of students' Korean and math diagnostic evaluation scores at the beginning of the school year were visualized as clusters using the K-means algorithm, and as a result, it was confirmed that a meaningful clusters were formed. In addition, through the results of the teacher interview, it was confirmed that this system was meaningful in improving the academic achievement gap, such as checking the learning level and academic achievement of students, and designing classes such as individual supplementary instruction and level-specific learning. This means that this academic achievement data analysis system helps to improve the academic gap. This study provides practical help to homeroom teachers in exploring ways to improve the academic gap in grades and classes, and is expected to ultimately contribute to improving the academic gap.

Development and Validation of Data Science Education Instructional Model (데이터 과학 교육을 위한 수업모형 개발 및 타당성 검증)

  • Bongchul Kim;Bomsol Kim;Jonghoon Kim
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.417-425
    • /
    • 2022
  • The 'Comprehensive Plan for Nurturing Digital Talents' reported at the Cabinet meeting of the Ministry of Education in August 2022 focuses on qualitative and quantitative expansion of informatics education centered on SW, AI education. With the advent of the era of artificial intelligence, data science education is also drawing attention as a field of informatics education. Data science is originally a field where various studies are fused, and advanced technologies are being used for data analysis, modeling, and machine learning. This study devised a draft of the instructional model of data science education through literature research and analysis of previous studies, and developed a final instructional model through usability test and expert validation.

Development of a Emergency Situation Detection Algorithm Using a Vehicle Dash Cam (차량 단말기 기반 돌발상황 검지 알고리즘 개발)

  • Sanghyun Lee;Jinyoung Kim;Jongmin Noh;Hwanpil Lee;Soomok Lee;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.97-113
    • /
    • 2023
  • Swift and appropriate responses in emergency situations like objects falling on the road can bring convenience to road users and effectively reduces secondary traffic accidents. In Korea, current intelligent transportation system (ITS)-based detection systems for emergency road situations mainly rely on loop detectors and CCTV cameras, which only capture road data within detection range of the equipment. Therefore, a new detection method is needed to identify emergency situations in spatially shaded areas that existing ITS detection systems cannot reach. In this study, we propose a ResNet-based algorithm that detects and classifies emergency situations from vehicle camera footage. We collected front-view driving videos recorded on Korean highways, labeling each video by defining the type of emergency, and training the proposed algorithm with the data.