• Title/Summary/Keyword: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.032 seconds

Development of a Simulator for Optimizing Semiconductor Manufacturing Incorporating Internet of Things (사물인터넷을 접목한 반도체 소자 공정 최적화 시뮬레이터 개발)

  • Dang, Hyun Shik;Jo, Dong Hee;Kim, Jong Seo;Jung, Taeho
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.4
    • /
    • pp.35-41
    • /
    • 2017
  • With the advances in Internet over Things, the demand in diverse electronic devices such as mobile phones and sensors has been rapidly increasing and boosting up the researches on those products. Semiconductor materials, devices, and fabrication processes are becoming more diverse and complicated, which accompanies finding parameters for an optimal fabrication process. In order to find the parameters, a process simulation before fabrication or a real-time process control system during fabrication can be used, but they lack incorporating the feedback from post-fabrication data and compatibility with older equipment. In this research, we have developed an artificial intelligence based simulator, which finds parameters for an optimal process and controls process equipment. In order to apply the control concept to all the equipment in a fabrication sequence, we have developed a prototype for a manipulator which can be installed over an existing buttons and knobs in the equipment and controls the equipment communicating with the AI over the Internet. The AI is based on the deep learning to find process parameters that will produce a device having target electrical characteristics. The proposed simulator can control existing equipment via the Internet to fabricate devices with desired performance and, therefore, it will help engineers to develop new devices efficiently and effectively.

A Study on Increasing Security Following Mutual Interaction and Integration of Dualized Security Category between Information Security and Personal Information Protection (정보보안과 개인정보보호 간의 이원화 보안범주의 상호연계 및 통합에 따른 보안성 증대에 대한 연구)

  • Seo, Woo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.601-608
    • /
    • 2018
  • While the legislation on the protection of personal information in public institutions was enacted and amended, the guidelines and laws on information security were focused, contracted and realized with focus on specific institutions. Mutual laws and guidelines have been applied and realized for the dual purpose of securing both the asset of macroscopic information and the asset of personally identification information, which are mutually different media information. However, in a bid to present the definition and direction of the fourth industrial revolution in 2017, a variety of products and solutions for security designed to ensure the best safety line of the 21st century, and the third technology with the comprehensive coverage for all these fields, a number of solutions and technologies, including IOT(: Internet of Things), ICT Internet of Things(: ICT), ICT Cloud, and AI (: Artificial Intelligence) are pouring into the security market as if plastic doll toys were manufactured in massive scale into the market. With the rising need for guaranteeing the interrelation for securities with dualistic physical, administrative, logical and psychological differences, that is, information security and personal information security that are classified into two main categories and for the enhanced security for integrated management and technical application, the study aims to acquire the optimal security by analyzing the interrelationship between the two cases and applying it to the study results.

A Legal Review on Abuse Cases of Virtual Currency and Legal Responses (가상화폐의 악용사례와 법적 대응방안에 관한 고찰)

  • Hwang, Suk-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.585-594
    • /
    • 2018
  • Virtual currencies have emerged along with new technologies such as block chain, artificial intelligence (AI), and big data. This study examines the benefits of a security-enhanced block chain resulting from individual trading, decentralized from governments, as well as the problems associated with misuse of virtual currencies. Virtual currencies, due to its anonymity, is vulnerable to financial crimes, such as ransom-ware, fraud, drug trafficking, tax evasion and money laundering. Use of virtual currencies can facilitate criminals avoid detection from investigative agencies. Government regulatory policy continues to address these concerns, and the virtual currency exchange has also announced a self-regulation proposal. However, a fundamental solution remains necessary. The purpose of this paper is to investigate the problems regarding abuse of virtual currency and to identify a practical system for transactions involving virtual currencies. However, in order to promote transactions involving virtual currencies and to institutionalize a governance system, multilateral cooperation is required. Although the restricting the use of virtual currencies regarding minors and foreign trade, as well as the introduction of a real-name system are considered promising prospects, many problems remain. Virtual currency is not a simple digital item but a method of redesigning the function of money. Coordinated efforts are needed globally to be able to further activate the positive aspects concerning the use of virtual currencies.

Application of AI based Chatbot Technology in the Industry

  • Park, Arum;Lee, Sae Bom;Song, Jaemin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.17-25
    • /
    • 2020
  • Based on the successful use of chatbot technology, this study examined what business values each company is creating. The chatbot service contributes to improving the productivity of the company by helping to answer or respond to the questions of employees inside the company or customers. And in the field of education, Instead of instructor, AI technology responds the questions and feedback of the students to reduce the work of the instructor. In the field of commerce, offline stores provide convenient and new purchasing experiences to customers by providing product purchasing services through artificial intelligence speakers and personalization service. Although chatbot service is creating business value in some business cases, it is still limited to the process of a specific company, and the spread rate is still slowing because the service scope, convenience, and usefulness are not greater than expected. Therefore, some chatbot development service providers is providing an integrated development platform to improve usability, Chatbots have the features and advantages of providing convenience instead of answering human questions. However, there is a disadvantage that the level of communication can be lowered by reducing various human subjective views and giving mainly objective answers. Through this study, we will discuss the characteristics, advantages and disadvantages of chatbot services by comparing them.

A Study on the Quality Monitoring and Prediction of OTT Traffic in ISP (ISP의 OTT 트래픽 품질모니터링과 예측에 관한 연구)

  • Nam, Chang-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.115-121
    • /
    • 2021
  • This paper used big data and artificial intelligence technology to predict the rapidly increasing internet traffic. There have been various studies on traffic prediction in the past, but they have not been able to reflect the increasing factors that induce huge Internet traffic such as smartphones and streaming in recent years. In addition, event-like factors such as the release of large-capacity popular games or the provision of new contents by OTT (Over the Top) operators are more difficult to predict in advance. Due to these characteristics, it was impossible for an ISP (Internet Service Provider) to reflect real-time service quality management or traffic forecasts in the network business environment with the existing method. Therefore, in this study, in order to solve this problem, an Internet traffic collection system was constructed that searches, discriminates and collects traffic data in real time, separate from the existing NMS. Through this, the flexibility and elasticity to automatically register the data of the collection target are secured, and real-time network quality monitoring is possible. In addition, a large amount of traffic data collected from the system was analyzed by machine learning (AI) to predict future traffic of OTT operators. Through this, more scientific and systematic prediction was possible, and in addition, it was possible to optimize the interworking between ISP operators and to secure the quality of large-scale OTT services.

Development of Artificial Intelligence Model for Predicting Citrus Sugar Content based on Meteorological Data (기상 데이터 기반 감귤 당도 예측 인공지능 모델 개발)

  • Seo, Dongmin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.35-43
    • /
    • 2021
  • Citrus quality is generally determined by its sugar content and acidity. In particular, sugar content is a very important factor because it determines the taste of citrus. Currently, the most commonly used method of measuring citrus sugar content in farms is a portable juiced sugar meter and a non-destructive sugar meter. This method can be easily measured by individuals, but the accuracy of the sugar content is inferior to that of the citrus NongHyup official machine. In particular, there is an error difference of 0.5 Brix or more, which is still insufficient for use in the field. Therefore, in this paper, we propose an AI model that predicts the citrus sugar content of unmeasured days within the error range of 0.5 Brix or less based on the previously collected citrus sugar content and meteorological data (average temperature, humidity, rainfall, solar radiation, and average wind speed). In addition, it was confirmed that the prediction model proposed through performance evaluation had an mean absolute error of 0.1154 for Seongsan area and 0.1983 for the Hawon area in Jeju Island. Lastly, the proposed model supports an error difference of less than 0.5 Brix and is a technology that supports predictive measurement, so it is expected that its usability will be highly progressive.

A Study on a Non-Voice Section Detection Model among Speech Signals using CNN Algorithm (CNN(Convolutional Neural Network) 알고리즘을 활용한 음성신호 중 비음성 구간 탐지 모델 연구)

  • Lee, Hoo-Young
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.33-39
    • /
    • 2021
  • Speech recognition technology is being combined with deep learning and is developing at a rapid pace. In particular, voice recognition services are connected to various devices such as artificial intelligence speakers, vehicle voice recognition, and smartphones, and voice recognition technology is being used in various places, not in specific areas of the industry. In this situation, research to meet high expectations for the technology is also being actively conducted. Among them, in the field of natural language processing (NLP), there is a need for research in the field of removing ambient noise or unnecessary voice signals that have a great influence on the speech recognition recognition rate. Many domestic and foreign companies are already using the latest AI technology for such research. Among them, research using a convolutional neural network algorithm (CNN) is being actively conducted. The purpose of this study is to determine the non-voice section from the user's speech section through the convolutional neural network. It collects the voice files (wav) of 5 speakers to generate learning data, and utilizes the convolutional neural network to determine the speech section and the non-voice section. A classification model for discriminating speech sections was created. Afterwards, an experiment was conducted to detect the non-speech section through the generated model, and as a result, an accuracy of 94% was obtained.

A Study on Elementary Education Examples for Data Science using Entry (엔트리를 활용한 초등 데이터 과학 교육 사례 연구)

  • Hur, Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.473-481
    • /
    • 2020
  • Data science starts with small data analysis and includes machine learning and deep learning for big data analysis. Data science is a core area of artificial intelligence technology and should be systematically reflected in the school curriculum. For data science education, The Entry also provides a data analysis tool for elementary education. In a big data analysis, data samples are extracted and analysis results are interpreted through statistical guesses and judgments. In this paper, the big data analysis area that requires statistical knowledge is excluded from the elementary area, and data science education examples focusing on the elementary area are proposed. To this end, the general data science education stage was explained first, and the elementary data science education stage was newly proposed. After that, an example of comparing values of data variables and an example of analyzing correlations between data variables were proposed with public small data provided by Entry, according to the elementary data science education stage. By using these Entry data-analysis examples proposed in this paper, it is possible to provide data science convergence education in elementary school, with given data generated from various subjects. In addition, data science educational materials combined with text, audio and video recognition AI tools can be developed by using the Entry.

Using Text Mining for the Analysis of Research Trends Related to Laws Under the Ministry of Oceans and Fisheries (텍스트 마이닝을 활용한 해양수산부 법률 관련 연구동향 분석연구)

  • Hwang, Kyu Won;Lee, Moon Suk;Yun, So Ra
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.549-566
    • /
    • 2022
  • Recently, artificial intelligence (AI) technology has progressed rapidly, and industries using this technology are significantly increasing. Further, analysis research using text mining, which is an application of artificial intelligence, is being actively developed in the field of social science research. About 125 laws, including joint laws, have been enacted under the Ministry of Oceans and Fisheries in various sectors including marine environment, fisheries, ships, fishing villages, ports, etc. Research on the laws under the Ministry of Oceans and Fisheries has been progressively conducted, and is steadily increasing quantitatively. In this study, the domestic research trends were analyzed through text mining, targeting the research papers related to laws of the Ministry of Oceans and Fisheries. As part of this research method, first, topic modeling which is a type of text mining was performed to identify potential topics. Second, co-occurrence network analysis was performed, focusing on the keywords in the research papers dealing with specific laws to derive the key themes covered. Finally, author network analysis was performed to explore social networks among authors. The results showed that key topics have been changed by period, and subjects were explored by targeting Ship Safety Law, Marine Environment Management Law, Fisheries Law, etc. Furthermore, in this study, core researchers were selected based on author network analysis, and the tendency for joint research performed by authors was identified. Through this study, changes in the topics for research related to the laws of the Ministry of Oceans and Fisheries were identified up to date, and it is expected that future research topics will be further diversified, and there will be growth of quantitative and qualitative research in the field of oceans and fisheries.

Performance Assessment of Two-stream Convolutional Long- and Short-term Memory Model for September Arctic Sea Ice Prediction from 2001 to 2021 (Two-stream Convolutional Long- and Short-term Memory 모델의 2001-2021년 9월 북극 해빙 예측 성능 평가)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1047-1056
    • /
    • 2022
  • Sea ice, frozen sea water, in the Artic is a primary indicator of global warming. Due to its importance to the climate system, shipping-route navigation, and fisheries, Arctic sea ice prediction has gained increased attention in various disciplines. Recent advances in artificial intelligence (AI), motivated by a desire to develop more autonomous and efficient future predictions, have led to the development of new sea ice prediction models as alternatives to conventional numerical and statistical prediction models. This study aims to evaluate the performance of the two-stream convolutional long-and short-term memory (TS-ConvLSTM) AI model, which is designed for learning both global and local characteristics of the Arctic sea ice changes, for the minimum September Arctic sea ice from 2001 to 2021, and to show the possibility for an operational prediction system. Although the TS-ConvLSTM model generally increased the prediction performance as training data increased, predictability for the marginal ice zone, 5-50% concentration, showed a negative trend due to increasing first-year sea ice and warming. Additionally, a comparison of sea ice extent predicted by the TS-ConvLSTM with the median Sea Ice Outlooks (SIOs) submitted to the Sea Ice Prediction Network has been carried out. Unlike the TS-ConvLSTM, the median SIOs did not show notable improvements as time passed (i.e., the amount of training data increased). Although the TS-ConvLSTM model has shown the potential for the operational sea ice prediction system, learning more spatio-temporal patterns in the difficult-to-predict natural environment for the robust prediction system should be considered in future work.